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Abstract

Electrohydraulic systems promise unique application opportunities and high performance, 

unmatched by other drive technologies. Typ ical applications include robotic manipulators, 

motion simulators, injection molding, and m aterial testing machines. However, the con­

tinuing success of eiectronydrauiic systems over competing drive technologies is contingent 

upon surpassing traditional performance levels, both in terms of physical measures such 

as motion precision and in terms of economic measures such as product cost. Im proving  

these measures requires a closer look at the hydraulic system dynamics (models) and an 

evaluation of advanced control techniques as they apply to hydraulic systems.

The  need for a better understanding o f hydraulic system dynamics directed part of our 

research to obtaining detailed models o f active hydraulic system components. Specifically, 

we have developed detailed nonlinear models of orifice and leakage Hows in proportional 

and servo valves. For controls, we have investigated the application of singular perturbation  

control to hydraulic systems.

The valve model provided a concise description of orifice flows for a wide range of 

proportional valves with various spool types. T h e  leakage model resulted in a better char­

acterization of leakage flow within servovalves, especially around null spool position where 

leakage flow is likely to dominate. T h e  singular perturbation control design not only pro­

vided improved tracking performance, but it also ensured robustness against uncertain and 

tim e-varying fluid bulk modulus, an effect present in all hydraulic systems.

The  results reported in this thesis make available new tools to analyze and improve the 

performance of electrohydraulic control systems. Model-based control design may benefit 

from the new models, since a better description of hydraulic system dynamics is now avail­

able. The  nonlinear proportional valve model along with a nonlinear controller may allow  

the use of less expensive and less precise valves in active vehicle vibration isolation, where 

the valve cost is a m ajor deterrent for commercial applications. In hydraulic m aterial testing 

machines, the leakage model may be used to improve the precision m otion performance in 

some tests such as creep loading, where the valve spool mostly resides w ith in  the null region

iii
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w ith relatively large leakage flows. The  singular perturbation control design will provide 

robust performance in applications, where the bulk modulus varies over time.
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n r

A-2 rod end cylinder area n r

•'Ip cylinder area >
n r

C l valve discharge coefficient

/ signal frequency Hz

F piston force X

Ff friction force N

Chy.l hydraulic force X

^'iR(S) port i return (supply) side leakage coeff.

h\- valve pressure gain in 's /kg

^ iR(S > port i return (supply) side How gain in ' - /k g

C , critical center valve flow gain I I I *  /s

L valve port opening in

Pi port i pressure X / n r

PiR(S) port i return (supply) side pressure N /n r

P l load pressure X / n r

C r iSI return (supply) pressure X /m *

/V valve pressure drop X /m *

Q i port i total flow rate m :*/s
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Ql load flow m3/s
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5 piston stroke m

l 'p hydraulic piston velocity m /s
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w valve area gradient m
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r P hydraulic piston position in

•r v • r valve spool position m

A fluid bulk modulus N /in*’

- iK(S) port f spool lapping parameters m

- 1 spool lapping parameters m

/ > fluid mass density k g /m 3

jJ signal frequency rad/s

■*'h hydraulic natural frequency racl/s

P coulomb friction N

Ch hydraulic damping coeff. -
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Chapter 1

Background and Literature Review

1.1 Description of the Problem

Hydraulic- ac tuators are used in applications that require fast motion and large actuation  

force’s. Typical areas of application include industrial robots, material handling machines, 

active suspensions, motion simulators, and injection molding machines. Indeed, hydraulic 

actuators arc1 often the only viable alternative for these' applications, because other actu­

ators. such as electric motors, usually lack the necessary power, size, and speed. Despite 

this extensive application, actively-controlled hydraulic- systems do not fully realize1 their 

potential due to. among other factors, difficulties in modeling and controlling their highly 

nonlinear characteristics.

T h e  m athem atical models for hydraulic system components have been developed by 

early researchers and are available in standard books on the subject [38. 37. 10. 53j. Among 

these components. How control valves are the most im portant because they most directly  

affect the dynamic properties of the system. Typical flow control valves include servovalves 

or proportional valves.

T h e  proportional and servovalves are used regulate the oil flow rates, and thereby the 

motion, of a hydraulic system. Due to the nature of orifice flow inside the valve body, 

these valves are the m ajor source of nonlinearities in hydraulic systems. The nonlinear

1
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flow property is present regardless how precise the valve body and the enclosed spool are 

produced. In  addition, most valves exhibit further nonlinearities such as deadzone due to 

valve spool overlap, hysteresis due to magnetic properties of the solenoid coil driver, friction, 

and nonlinear flow forces. W ithout the proper analysis and design tools, the benefits of 

hydraulic servosvstems may be overshadowed by the problems in dealing w ith such complex 

nonlinear systems.

Most hydraulic component models have been developed for subsequent application of 

linear control design tools: they are therefore simple and linear. In  precision motion control 

applications, however, the various nonlinearities mentioned cannot be ignored because they 

can greatly degratle the system performance. Furthermore, linear control theory cannot 

adequately cope with nonlinearifies such ;ts deadzone or friction. Hence for such appli­

cations. linear controllers are simply not capable of providing high performance. This is 

especially true when economic considerations drive the use of less expensive* and less precise* 

components. In order to fully realize the capabilities of hydraulic systems, more complete 

models of hydraulic systems components must be developed, and these models must be 

incorporated into the design of advanced controllers.

In the following sections, we first review the available literature on modeling the dy­

namics o f hydraulic systems and various nonlinear control techniques as they relate to 

electrohydraulic system applications. A brief description of our research and the underlying 

motivations are presented next. We conclude with a discussion of the implications of our 

new results.

1.2 Literature Review

As a precursor to developing improved analysis and control tools for electrohydraulic sys­

tems. we surveyed the available results on modeling hydraulic control valves and the relevant 

techniques in control theory. In  the next sections, we first review the literature on modeling 

hydraulic flow control valves. Specifically, we present the results on modeling of various flow 

nonlinetirities introduced by valve properties. Next, we review the literature on nonlinear

o
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control techniques relevant to the control of electrohydraulic systems. Adaptive nonlinear 

and singular perturbation control techniques are discussed in more detail, since they are 

readily applicable to hydraulic systems. Finally, we address some of the gaps in the cur­

rent literature on modeling and control of electrohydraulic systems and point to possible 

research opportunities in these areas.

1.2.1 M o d e lin g  and A nalys is  o f  E le c tro h y d ra u lic  System s

In this section, we review some of the literature available on modeling hydraulic How control 

valves, in particular proportional and servovalves. The  focus is on the modeling of various 

How nonlinearities, introduced by orifice flow, valve1 leakage, and valve geometry.

The nonlinear response found in control valves results in nonlinear behavior of the hy­

draulic systems employing these valves. Furthermore1, when configured into a hydraulic 

system, components such as pumps, accumulators, hose's, valves, and cylinders. e>ach con­

tribute to the1 oveuall eiynamic re'sponse. As the- components are* coupled, the moeleling task 

becomes increasingly difficult. In this respect, a systematic approach to modeling hydraulic 

system dynamics prows to be1 useful [ I I .  17].

Among the many hydraulic systems components, the1 control valve's such as proportional 

and servovalves are the most im portant. Th eir dynamics determine the* basic response 

and stability  characte'ristics of hydraulic systems, since they are often the only actively 

controlled components in the system. Models of various configuratiems of control valves are 

available in [28. 54]. and hysteresis modeling in proportional valves is provided in [52]. These 

models provide some understanding of complex interactions between electrical, mechanical, 

and fluid aspects of hydraulic control valves. But they don't describe the nonlinear flow 

properties w ith in  various flow regimes resulting from geometric valve properties.

Hydraulic valves exhibit various nonlinear behaviors in the form of both smooth and non­

smooth relations among various system variables. T h e  fundamental smooth nonlinearity  

in hydraulic valve models is the square-root term  in the orifice flow equations, which is 

always present. This term  is essentially a nonlinear input gain, which varies as a function of

3
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chamber pressures in a cylinder attached to the valve. Non-smooth nonlinearities arise from 

geometric imperfections of the valve and its spool. These nonlinearities manifest themselves 

as deadzones in overlapped valves and as piecewise-linear nonlinearities in underlapped 

valves. I f  ignored during controller design, hydraulic system nonlinearities may greatly  

degrade or even destabilize the hydraulic system performance. In this respect, the analysis 

of hydraulic system stability is of particular importance, as discussed in [55. 36].

The  leakage How between a servovalve spool and valve body is another key consideration 

in applications involving precision positioning. The  valve leakage results in a nonlinear How 

relation in the vicinity of neutral spool position. An ideal servovalve has perfect geometry, 

so that leakage Hows are zero. In this c;ise. the theoretical oriHce equation holds over the 

whole range of spool travel [3Sj. But for actual servovalves. this relation only holds outside 

the null region. Experim entation and analysis indicate that, at small spool displacements, 

the leakage How is much larger than the oriHce How. Most servohydraulic designs are based 

on the ideal oriHce relation, e.g. [3!). 45]. applied through the entire range of spool motion. 

The use of such models for design appears somewhat questionable, given the applicability  

of ideal relations only outside of the null region and the dominance of leakage How within  

the null region.

Although models of leakage How in servovalves are available in the literature, these 

models impose lim itations on the spool geometry and valve properties. T h e  leakage How 

model developed in [20] assumes a small and symmetric overlap between the spool lands 

and the valve control ports. However, this model is only valid for a small positive spool 

displacement lim ited to approximately two percent of maxim um spool travel. Furthermore, 

the model predicts non-smooth flow rate curves for small oriHce openings, due to the non­

smooth transition from the assumed lam inar leakage to turbulent oriHce flow. The  model 

developed in [18] circumvents this problem and provides smooth transition from leakage to 

orifice flow. This model approximates the leakage flow path in a servovalve its a short annulus 

of fine clearance and employs the lam inar flow model developed in [19]. The  resulting model 

is. however, too complex to be used for practical design of nonlinear controllers to improve

4
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hydraulic system performance. A simpler and easy-to-parameterize model o f leakage flow 

would be more valuable for analysis and control design.

1.2.2 C o n tro l o f  E le c tro h y d ra u lic  System s

In this section, we review some of the literature available on nonlinear control techniques 

as they apply to the control of electrohydraulic systems.

Various control techniques developed in recent decades such ;is adaptive and singular 

perturbation control, as well ;is Lyapunov based nonlinear control are especially relevant 

for the improved control of hydraulic systems. These techniques require better models of 

hydraulic .-vstem dynamics to cope with ever increasing demand for higher performance with  

no additional cost. Indeed, the only apparent way to improve the performance w ithout using 

expensive components is to incorporate previously neglected dynamics such ;is nonlinearities 

and leakage into the controller synthesis process.

A common approach to incorporate the square-root nonlinearity into the controller 

design process is to invert this term  by me;isuring the cylinder chamber pressure's. Following 

this approach. Sohl and Bobrow [44. 45] applied Lyapunov techniques to design nonlinear 

controllers for position and force control of a hydraulic system. However, they assumed 

constant system parameters, identified using an off-line le.ist-squarcs method. Nonlinear 

force control is treated by Alleyne [t>]. and its lim itations are discussed in [9. 21]. Adaptive  

control of hydraulic systems w ith  unknown or tim e-varying parameters is discussed in [12. 

40], However in [49]. only one parameter group, treated as a single parameter, is iissumed 

unknown, even though some of the parameters in the group appear elsewhere in the system 

model equations. Sliding mode control of a hydraulic suspension system is developed in [8]. 

In [26]. sliding mode control is applied to control a solenoid-driven proportional valve. 

However, the control focuses on the position control of the valve spool without analyzing its 

effect on any attached hydraulic system configuration. The  feedback linearization approach 

is applied to hydraulic systems in [27]. where a differentiable (diffeomorphic) transform ation  

is used to linearize the input-output behavior of the hydraulic system [31].

5
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Although square-root nonlinearity in hydraulic systems is relatively easily compensated, 

non-smooth nonlinearities such as deadzone. hysteresis, mid friction are much more difficult 

to contend w ith via control. The  emerging area in control theory of nonlinear control of 

systems w ith  non-smooth nonlinearities addresses these effects. One approach to this prob­

lem is the adaptive inverse control of nonlinear systems first introduced by Recker [41 j and 

later developed by Tao and Kokotovic in [46. 47. 48. 49]. Another approach is the variable 

structure or sliding mode control of systems w ith non-smooth nonlinearities [29]. These 

approaches appear applicable to the design of hydraulic control systems, but the existing 

theory may be difficult and costly to implement in commercial hardware. Some preliminary 

implementation results reported in [16] point to the limited success o f the theories developed 

in [49] to control real systems w ith non-smooth nonlinearities. M ore im portant. ;ts indicat­

ed in [41]. further work is required for adaptive compensation of m ultiple piecewise-linear 

non-smooth nonlinearities, which are more relevant in the case of less expensive hydraulic 

proportional valves.

The inherent slow and fast dynamics is another characteristic feature of hydraulic sys­

tems. In general, the mechanical dynamics, which are characterized by force-velociry and 

foree-displacement relations, w ill be considerably slower than the fluid dynamics of pressure 

transients. The resulting two-time-scale behavior fits into the framework of singular per­

turbation theory. Although singular perturbations have been discussed in the framework of 

control theory [33. 34. 35]. applications to hydraulic systems are few and lim ited in scope. 

In [32]. K im  applies singular perturbation analysis to a hydraulic active suspension system 

to justify the model order reduction of a servovalve electrical subsystem. In [14]. d ’Andrea 

Novel et al. design stabilizing and tracking controllers for a hydraulic robot using singular 

perturbations.

Controllers for hydraulic systems are often designed using a simplified model where some 

of the fast dynamics of the system are ignored. This ad-hoc approach stems from mathemat­

ical convenience w ithout rigorous justification. A  more detailed analytical study would help 

develop and evaluate context-dependent models of hydraulic systems. By bringing singular

6
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perturbation modeling and analysis techniques into the realm of hydraulic systems, it is 

possible to match model complexity w ith  the control requirements, thus providing analyti­

cal justification to model simplification. A lternatively, singular perturbation control theory 

can be used for designing efficient "composite’’ controllers by decomposing the feedback 

design problem into two design subproblems for the slow and hist dynamics [13. -12. 43. 30]. 

The two designs are then combined to give a design for the full system.

1.2.3 N e e d  for F u r th e r  R esearch

Although various models of hydraulic How control valves have been developed by researchers, 

most of these models are not intended to be used for subsequent control design. Accordingly, 

the model parameters are difficult to measure or characterize. On-line identification o f these 

parameters for adaptive control purposes may also require expensive' sensors and heavy 

computations. Therefore.

Simple-to-eharaeterize yet precise models of nonlinear valve How dynamics would 

be a valuable tool for the control designer.

At present, most of the electrohydraulic control systems use conventional P ID  (propor­

tional. integral, anil derivative) controllers. Historically, these controllers provided satisfac­

tory performance because of the inherently nice properties of hydraulic systems, such as 

large bandw idth, high gain, and high stiffness. However, the requirements of ever higher 

performance and smaller product size lim it the performance of hydraulic systems attainable  

using conventional controllers. In  such cases, these controllers cannot provide satisfactory 

performance and robustness against parameter variations and flow nonlinearities. Hence.

New control techniques should be developed, or existing approaches should be 

adapted to improve the performance of hydraulic control systems.

i
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1.3 Research Summary

Considering the need for improved modeling and control of hydraulic systems, we focussed 

part of our research in obtaining detailed models of hydraulic system components, especially, 

proportional anti servovalves [23. 24]. These models provide basic tools for the implemen- 

tuition of \ i i n o n o n l in e a r  control tichniiiuc.s to improve li^clratiiic .m lu I pcriuriuiiatc. 

without using expensive components. In particular, model-based control design may bene­

fit from these improved models, since a better description of hydraulic system dynamics is 

available.

For control, we investigated the applicability of singular perturbation control techniques 

to hydraulic systems, with encouraging prelim inary simulation results [22]. The resulting 

controller not only provides improved tracking performance, it also ensures robustness a- 

gainst uncertain and slowly varying bulk modulus.

Although model-based control techniques will benefit from the use of our detailed models 

of valve dynamics, improved performance requires a priori knowledge of system configuration 

and properties. On the other hand, robust control techniques such ;is singular perturba­

tion control are less sensitive to variations in system properties, and may provide better 

performance for a wider range of system configurations. For highly nonlinear systems such 

as hydraulic systems, robustness to parameter variations should be ensured for acceptable 

performance in real-world applications. Summaries of our dual approach of better modeling 

and better control to improve the performance of electrohydraulic systems follow.

1.3.1 P ro p o rt io n a l V a lve  M o d e lin g

Developments in nonlinear control theory facilitate design of controllers for systems hav­

ing non-smooth nonlinearities in their dynamics. Hydraulic systems that use inexpensive 

proportional valves are examples of such systems, where non-smooth nonlinearities arise 

due to valve geometry and spool imperfections. However, without a proper valve model, 

nonlinear analysis and control of these hydraulic systems is not possible. In  Chapter 2. we 

develop nonlinear equations for a generic proportional valve model, which we have used to
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obtain simplified flow rate  expressions under generally accepted assumptions [23]. These 

equations relate a set of geometric spool properties and physical model variables to the flow 

rate through the valve ports. The development focuses on obtaining a single set of flow rate 

equations for the crises of critical center, overlapped, and underlapped proportional valves. 

The proportional valve model equations are useful for system simulation anti for nonlinear 

controller design. In C hapter 3. we analyze the accuracy of this generic proportional valve 

model. T h e  accuracy of the model is determined through a non-dimensional analysis aj>- 

proacli. and the results hold for any sim ilar system. Hence, given a set of hydraulic system 

parameters, the engineer may determine a priori whether the valve model w ill provide an 

accurate representation of the valve dynamics for subsequent analysis and control design.

1.3.2 M o d e lin g  Leakage F low  in  Servovalves

In our subsequent research [24]. we considered How. in particular, leakage flow, between 

a servovalve spool and valve body. Although often ignored, experimentation and analysis 

indicate that at small spool displacements this flow is much larger than orifice flow. In 

precision positioning applications, where the servovalve generally operates w ithin the null 

region, leakage How may severely degrade the performance of conventional servohydraulie 

designs based on an ideal orifice relation. Hence, servovalve models for such applications 

should include leakage How. In Chapter 4. we develop a model for leakage How in a servo  

valve. Th is  has been achieved by reviewing experimental leakage How data and identifying 

a simple m athem atical form that ( I )  makes physical sense and (2 )  can replicate experimen­

tal data. The  resulting model accurately captures leakage behavior, which is modeled as 

turbulent flow with a flow area inversely proportional to the overlap between the spool land 

and valve orifices. W hen combined w ith  orifice relations, the model extends the accuracy 

and region of applicability of existing servovalve models. Furthermore, the leakage model 

is easily parameterized, an im portant feature for controller design and adaptive methods.

9
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1.3 .3  S in g u la r P e r tu rb a t io n  C o n tro l o f H y d ra u lic  System s

Tracking control for hydraulic systems is a key system requirement, as these devices must 

often follow prescribed motions. Tracking control of hydraulic systems has been approached 

using both linear and nonlinear control laws. The latter provides improved performance, 

but at the expense of additional sensors. Further, the control laws often employ hydraulic 

fluid bulk modulus -a  difficult-to-characterize q u a n tity —as a parameter. In  Chapter 5. 

we provide a new control design procedure to overcome these difficulties. The resulting 

controller requires no additional sensors and the hydraulic system is robust to variations 

in the bulk modulus [22]. A dual approach of singular perturbation theory and Lyapunov 

techniques forms the basis of the procedure. For the c;ises of a sm all-am plitude sinusoidal 

input and a large-am plitude polynomial input, a candidate system achieved good tracking 

performance and exhibited outstanding robustness. The ability to acc omplish good tracking 

in a robust manner with no additional sensors provides advantages over other nonlinear 

tracking algorithms, where the effective bulk modulus is treated as a known and fixed 

parameter [-10. 45].

1.3 .4  F u tu re  Research

Thc> work reported here provides a good foundation for further research in improving the 

performance of electrohydraulic systems. In particular, new research should seek further 

developments in incorporating the proportional and servo valve models developed here with  

various nonlinear control techniques and analyze the robustness of these techniques to pa­

rameter variations.

This thesis also provides new tools to analyze and improve the performance' of elec­

trohydraulic control systems. Possible applications of these results include the use of less 

expensive (and non-smooth nonlinear) proportional valves together w ith a nonlinear con­

troller in active vehicle vibration isolation systems, where the valve cost is a m ajor deterrent 

for commercial applications. In  hydraulic m aterial testing machines, the use of the leakage 

model may be used to improve the precision motion performance in some tests such as creep
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loading, where the valve spool mostly resides w ith in  the null region w ith relatively large 

leakage flows.

11
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Chapter 2

A Unified M odel of a Proportional 

Valve

2.1 Introduction

Hydraulic system* are often employed in high performance applications that require hist 

response* and high power. These applications include high bandwidth control of position 

and force [ 1 2 . 44]. active vibration isolation in vehicles [8 ]. and control of multi-axis robotic 

manipulators [51]. The hydraulic actuator, usually a cylinder, provides the motion of the 

load attached to the hydraulic system. A  control valve meters tin* fluid into and out of the 

actuator as a spool traverses within the valve body. The control valve is either a servovalve 

or a proportional valve. The  less expensive proportional valve consists of a solenoid that is 

directly attached to the spool, and the spool displacement is. in principle, proportional to 

the input current. The performance of hydraulic systems strongly depends on the control 

valve and spool geometry and their manufacturing tolerances. The manufacturing precision 

distinguishes proportional valves from servovalves. in terms of both performance and cost.

In  hydraulic control applications, proportional valves offer various advantages over ser­

vovalves. Proportional valves are much less expensive. They  are more suitable for industrial 

environments because they are less prone to m alfunction due to fluid contam ination. In  ad-

12
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dition. since proportional valves do not contain sensitive, precision components, they are 

easier to handle and service. However, these advantages are somewhat offset by nonlinear 

response characteristics.

Since proportional valves have less precise manufacturing tolerances, they may suffer 

from performance degradation. The larger tolerances on spool geometry result in response 

nonlinearities, especially in the vicinity of neutral spool position. Proportional valves lack 

the smooth How properties of •critical center" valves, a condition closely approximated by 

servovalves at the expense of high machining cost. Small changes in spool geometry (in 

terms of lapping) may have large effects on the hydraulic system dynamics. For example, a 

"closed center" (overlapped) spool may result in steady state error because of its deadzone 

characteristics in the How gain [38]. An "open center" (underlapped) spool, on the other 

hand, may raise stability concerns due to the increased How gain near neutral spool position. 

Hence, a critical center valve model is not sufficient for designing hydraulic control systems 

using proportional valves. A more comprehensive model of proportional valves is necessary 

in designing and analyzing hydraulic systems.

Various researchers have developed m athem atical models of proportional control valves 

[38. 33]. However, these works usually assume a critical center valve spool whose motion is 

restricted to the vicinity of the neutral position for subsequent linearized analysis. Modeling 

and analysis of underlapped valves are briefly discussed under the restrictive assumption 

that the spool moves w ith in  the underlap region [38]. The  overlapped valve models are. in 

general, ignored from the discussion. More general valve models have also berm developed, 

however, they usually apply to expensive critical center servovalves [54. 55] or various con­

figurations of How control valves [28]. A generic proportional valve model applicable under 

all operating regimes and for all types of spool lapping is lacking.

W ithout the proper model, nonlinear analysis of hydraulic system performance is not 

possible. As a number of nonlinear control strategies have been developed in the hist 

decade [47. 49]. the availability of a general nonlinear model of a proportional valve would 

increase the likelihood that the former could be applied to the latter. In  this chapter, we
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develop a nonlinear m athem atical model for a generic proportional control valve. This model 

relates a set of geometric spool properties and physical variables to the flow rate through 

the valve ports. T h e  development focuses on obtaining a single set of flow rate equations 

for the cases of critical center, overlapped, and underlapped proportional valves. The flow 

rate is expressed its a continuous but nonlinear function of spool lapping parameters, its well 

its other conventional parameters. We derive simplified How rate equations under certain 

generally accepted assumptions (snclt as equal cylinder chamber volumes and incompressible 

flu id), while keeping nonlinearities due to spool geometry. The variation of the flow gain 

and uncertainty bounds of the How rates ;ts a function of valve and lapping parameters are 

also analyzed.

This chapter is organized its follows. We first develop the orifice How equation for a 

flexible orifice model that describes various nonlinear effects. The orifice equation forms the 

basis of the hydraulic proportional valve model. In a typical hydraulic control application, a 

hydraulic cylinder serves as the actuator. In the next section, we present the mathematical 

model for such actuators. The proportional valve equations are then simplified under widely 

accepted assumptions, and flow properties of these valves as a function of the lapping 

parameters are analyzed. The chapter closes with a brief discussion of conclusions and 

future research directions.

2.2 Development of Proportional Valve Model

M any fluid power control applications use a variable orifice for controlling the fluid flow. 

A sliding element, or spool, has various "lands" that modulate flow. The spool moves in a 

bore (sleeve) containing ports. The movement of the spool causes each land to vary the area 

of the corresponding ports exposed to the flow, thereby changing the How-versus-pressure 

relationship of the orifices. An underlapped spool has an orifice port opening that is larger 

than the land: whereas an overlapped spool hits an orifice port opening that is smaller than 

the land.

The  variable orifice in Figure 2.1 is the basic element for controlling hydraulic systems. It

14
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has three flow rates associated w ith the orifice ports (Q is- Q i r - Q i )• The  supply and return

A Pr

- 1R - IS

\
\

Q ir

/
i

Q i  s

P i ' Q  i

Figure 2.1: Spool valve orifice.

ports connect to the pump and tank lines respectively. The orifice output port provides 

the regulated How and usually connects to an actuator such ;is a hydraulic cylinder. The  

parameters As and fm  represent the spool underlap or overlap (at neutral spool position) 

on the supply and return ports of the orifice, and they can he set independently. W ith  

respect to the neutral spool position, positire values of these parameters correspond to spool 

untlrrlup (shown in Figure 2.1). Sim ilarly, nrt/ativr  parameter values define an orer lappal  

spool.

Various simplifying assumptions and valve models are used in applications. Most hy­

draulic control systems employ critical center valves, where the spool lands perfectly match 

the valve ports so that As =  AR =  0. Typically, the supply pressure. Ps. i-s larger than 

the port pressures, (e.g. P i), and the return (tank) pressure. P^. is small. This assumption 

avoids the flow reversal so that the- How is either directed from the supply line to the out­

put port, or from the output port to the return line. To avoid flow saturation and to use 

linearized analysis, the spool travel is in general restricted so that |.rv | <g; L.  Under these 

conditions, the orifice equations sim plify to

Q =
Cd I f  \ p l [ p  v'Ps -  Pi A - • A  >  o.

~C<\ l v Pi  -  Pr  a -  a  <  0 .
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so that only the supply or the return orifice is open at a given tim e [38].

Although the above assumptions sim plify the orifice model, they do not always hold 

in high performance applications. In  hydraulic control systems rapid changes of fluid flow 

properties are associated w ith  rough disturbance inputs and the motion of large dynamic  

loads. Under these conditions, various How anomalies might occur. These include back 

flow into the supply line (P i >  Ps) or from the tank (P i <  Pr ). Further, the spool 

may not be critically centered, either intentionally or due to manufacturing tolerances. 

Hence, both the supply and return orifices or none of them may be open at a given time. 

These considerations necessitate a more complete orifice model that w ill represent a wide 

variety of realistic- operating conditions. The generalized equation, which includes various 

nonlinearities, for the supply side How rate can be expressed as

Q is =

0  lor x v <  — s is .

o sgn ( Ps -  P i ) | Ps -  Pi 11 '  ( i\-

for -  f|s  <  r v <  L

n sgn ( Ps -  P i) |Ps -  Pi |1 - ( L )

for L -  f is  <  A -.

- is i 

= is- (2 . 1a)

whore n =  p. Sim ilarly, the return side- How rate is given by

Q ir  =  <

0  for -  ,rv <  - f i R .

«  sgn (P i -  P r )  I P i -  PR| l "  ( - x v 

for — £ [r  <  - x v <  L 

a  sgn (P i -  P r )  | P i -  P r | 1, " (L) 

for L -  •:i r  <  - , r v.

. i/-J
- 'i r )

■ MR- (2 . 1b)

Note that while the ranges for the values of the parameter x v remain sim ilar for both 

equations in (2.1). the sign of x v is reversed. This is because the orifice opening on one side 

of the output port becomes larger while the opening on the other side becomes smellier as
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the parameter x v is varied. Further, the flow equations (2.1) assume turbulent flow through 

the orifices, no interm il leakage, and no cavitation. The to ta l flow rate. Q t . through the 

output port is the difference between the supply and return side flow rates, so that

Qi =  Qis -  Q i r -

These How-rate equations are quite general and encompass the various nonlinear effects 

previously mentioned. In particular, the above.* equations model: valve underlap or overlap, 

asymmetric neutral land position, and flow reversal. Although the How-rate equations 

in (2 . 1 ) appear difficult to analyze and interpret, they are simplified if we use a saturation 

function. The saturation function, shown in Figure 2.2. is defined ;ts follows

u(.r. f .  L )
L

r

L - z  L

Figure 2.2: Saturation function (shown for z >  0).

(1 for x <

u(s.  L )  — r  4 . for _  f  <  T <  £  _ (2.3)

L  for L — i  <  x.
v.
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Using this function, the orifice equations can be expressed more simply as

Q  i =  Q  is -  C?ir

=  a  [sgn (Ps -  P ,) |Ps -  P i l ‘ J « (x v. = is. L) (2.4)

-  sgn ( P i  -  P r )  |P i -  P R| ‘ - u ( - . r v.£ 1R. L)

2 .2 .1  P ro p o rtio n a l V a lv e  M o d e l

Having developed a concise relation for orifice How. we will now incorporate this relation in 

the proportional valve shown in Figure 2.3. The model results from combining two orifice

P h

t
Ps P r

tR

X Z

: 2S -1R

Q i r  <7 IS

p. i y ,

Q l S  Q JR 

A
i

P ,  I Q-,

Figure 2.3: Hydraulic proportional valve.

equations so that the lands are rigidly connected and undergo identical displacements. The  

How equation for Port 1 is identical to the orifice equation (2.4). The How equation for 

Port 2 1ms a similar form, but the position of the supply and return lines are interchanged, 

resulting in a modified form in terms of the sign of the spool position variable. ,rv:

Q i  =  Q i r  ~  Q i s

sgn (P j -  P r )  |P ,  -  P r | 1/J u(.rv. f-2R. L)=  a (2.5)

-  sgn (Ps -  P i )  |Ps -  P j |1;‘  u ( - . r v .£ js . L)

T h e  How-rate equations (2.4) and (2.5) can be used to simulate all  im portant nonlinear
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behavior of hydraulic proportional valves. In  particular, valve land overlap or underlap and 

valve land asymmetry can be simulated by varying valve parameters. Port 1 characteristics 

are changed via the parameters fis  and = i r .  A symmetric overlapped land has -'is =  m r  <

0. and a symmetric underlapped land has = is =  = ir  >  0. Asymmetric spool properties and 

neutral position offset between valve lands can also be modeled using underlap or overlap 

values so that fis  ?= £ i r . Sim ilar considerations apply for the Port 2 parameters and 

- JR-

The overall intent of this chapter is to develop a relationship between valve-spool dis­

placement and fluid How. The bond graph model of the proportional valve, shown in Fig­

ure* 2.4. will be used in the sequel to develop this relationship.

R i 0 R>

Figure 2.4: Proportional valve bond graph (m odified from [11]).

2.3 Hydraulic Cylinder M odel

In applications, the hydraulic actuator is typically a double-acting hydraulic cylinder. The 

cylinder ports are connected to a proportional valve, and piston motion is obtained by 

m odulating the oil flow into and out of the cylinder chambers. A  proportional valve provides 

this modulation.

19
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T h e  motion of the double-acting hydraulic actuator shown in Figure 2.5 can be precisely 

controlled by regulating the How rates Q \  and Q-i. However, the relationship between the

Figure 2.5: Double-acting hydraulic piston.

piston position. r p. and the How rates depends on the dynam ic properties of the loads acting  

on the piston. The bond graph in Figure 2.6. which represents the power How in a hydraulic  

piston, facilitates analysis of this relationship.

C i  : \ \ / - i  

/ ]

Pi

R *  ■ P 1P̂ -

T F

1/
1

T F
A ,

Q-2

1/
c> :  V ' . / J

Figure 2.6: Hydraulic piston bond graph (m odified from [11]).

T h e  oil and actuator properties determine the exact form of this relationship. Hydraulic
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fluid compressibility and leakage flow across the chambers also affect the flow rates. Fluid  

compressibility is characterized by the equation

d v  = - y i P - ( 2 .6 )

For hydraulic fluids, the bulk modulus has a nearly constant value. The leakage flow across 

the cylinder chambers is a linear function of the pressure differential across the piston [8 ]. 

expressed ;is

where /?,p is the coefficient of internal leakage.

T h e  application of the continuity equation to the two sides of the cylinder yields

are the total fluid volumes in the two sides of the cylinder [44]. Here. S  is the piston 

stroke, anti I'io and \%o are the fluid volumes in the lines and fittings on the two sides of 

the cylinder. The first left-hand terms in (2.7) express the effect of oil compressibility on 

the flow rates. The first right-hand terms represent the flow rates as a function of volume 

change due to the piston motion.

T h e  net force. F .  provided by the actuator is the difference between the hydraulic force

Q x P  =  R x P ( P i  - P ’ l

h p { =  _ v ,  _ p . , +  q , .

h p ,  =  +  Rip(Pl  _  p , )  -  Q ,.

(2.7a)

where

 ̂l — I  lo +  -dt.rp. 

f i  =  V.-o +  •‘V>(>h — -Tp)- (2 .8 b)

(2 .8 a)
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and the frictional force, that is.

F  =  F hvii -  F f ( i - p )
(2.9)

=  A i P \  -  A->P> -

The friction force may be modeled as a combination of Coulomb friction, which is approxi­

mated by the signum function, and viscous friction:

Ff(-r i>) =  / / st̂ n r p +  b.rp.

where // is the Coulomb friction and b is viscous friction coefficient. More general friction 

models can be incorporated into the friction force term. F f(./p ). if necessary.

2.4 Analysis of the Hydraulic System Properties

The dynamics of a hydraulic system comprising a generic proportional valve and a cylinder 

is described by the model equations (2.4)-(2.5) and (2 .7 )-(2 .9 ). Although various analyses 

have been performed using sim ilar models, they are in general limited to systems with 

critical center valve's. Using unified valve equations developed in previous section, however, 

we are able to extend analyses to all such systems, regardless o f the valve type.

The general trend in hydraulic servo control systems is to eliminate underlapped and 

overlapped spools in proportional valves. Instead, precision manufactured and expensive 

critical center spools are used together with a matching valve body. However, advances 

in nonlinear control theory made it possible to use open and closed center valves to our 

advantage, or at least to cope w ith  the nonlinearities they introduce [41. 47. 49].

In this section, we obtain various How properties of generic proportional valves in a form 

suitable for nonlinear control applications. We assume the valve-cylinder configuration hits 

the following characteristics:

1 . a double-acting cylinder w ith  equal chamber areas: A  =  A t =  A n
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2. an incompressible fluid: J  — :x.

3. a matched spool w ith  lapping parameters: sq =  sqs =  £->R- and r-> =  Sir  — s-js.

4. no flow reversal or cavitation: P<; >  Pt >  P r  >  0. i =  1 . 2 .

Using Assumptions 1 and 2. the cylinder bond graph structure of Figure 2.G reduces 

to a simpler form as shown in Figure 2.7. This allows simplified How-rate equation to be

where we used (2.8) to obtain the expressions for the derivatives of chamber volumes. This  

equality allows us to derive simplifying relations for the valve flow rate equations in (2.4) 

and (2.5). From the proportional valve bond graph of Figure 2.4. we obtain

Figure 2.7: Simplified hydraulic piston bond graph.

derived from (2.7):

Q t =  Q i  =  d .rp -r /?ip(P[ -  P>).

Q l =  Q us -  C?1R-

Qi = QiR ~ Q is-

so that

Q is  -  Q i R  =  —( Q i s  ~  Q i r ) -
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since we have Q \  =  Q>.  Therefore, using (2 .4 )-(2 .5 ) and Assumptions 3 and 4. this equation 

can be explicitely w ritten in terms of systems variables as

( \ /P s  -  Pi -  y  Pi  -  P r )  u (x v . z i . L )  =

-  ( y P s  -  P i  -  V 'P i  -  P r )  u ( - . r v. f > .L ) .  (2 . 1 0 )

This equation must be satisfied for every combination of system parameters and vari­

ables. We have available two possible means to satisfy (2.10):

L. The  terms

x/ r T — P i — v  P.’ — A t  ' 0.

V Ps — P j — v7 A  — A t =  0 .

which results when Ps -r P r  =  Pi -r P>.

2. The terms

ti(.rv. f ] ,  L )  =  u{ — .rv. f  j .  L)  = 0 . (2.11)

which results when Ps +- P r  #  Pi -F P>. To see this, we rearrange (2.10) in the form 

u(j v . - i . L )  =  -
/Ps ~  P> ~  y/P i  ~  P r  

L v  Ps -  A  -  y /P i  ~  P r
u ( - . r v. f_). L) .

Since the bracketed term  is positive for Ps +  P r  «  Pi +  P> and each u(- )  >  0 . it is 

clear that (2 . 1 1 ) must hold.

Let us now consider these two cases vis-a-vis valve lapping:

(a) For an overlapped or critical-center spool: we have f i - f j  <  0. so that the equality in 

(2 . 1 1 ) is satisfied only for x v 6  (f-j. —= i )- Therefore, outside of this region. Ps +  P r  =  

P i +  P> must hold. Furtherm ore, w ith in  the region x v 6  (;•>• ~ - 1 )• all flow rates equal
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zero.

(b) For an underlapped spool: we have f [ . f >  >  0. so that the equality in (2.11) is never 

satisfied for any value of x v. Thus Ps +  P r  =  Pi +  A  must hold.

The consequences o f (a) and (b) are the following: either Ps +  P r  =  Pi +  P j or all valve 

tiow rates equal zero, Substituting this pressure equality into the How rate equations. (2.4) 

and (2.5). and comparing terms, we obtain

Q is =  Q ’r- 

Q i r  =  Q ’s-

which also holds for zero How rates. Furthermore, since Q \  =  Q->. the How rate equations 

can be expressed ;us

Q i  =  Q-i =  » i | i i ( A - . : ' iT )  -  ni <u( - .cv . L ) .  (2 . 1 2 )

where

/P s  -  P r  -  A . /P s  -  P r  -  A
ni i =  o y  ----------- . m-2 = o y ' ----------------------

are the slopes and Pl =  Pi -  P> is the load pressure.

Equation (2.12) provides a useful relation for How-rate versus spool displacement. This  

relation is plotted in Figure 2.8. where an overlapped valve is assumed. We see five distinct 

regimes. Inside the deadzone. the How rates are zero. This corresponds to the cause Ps +  P r  == 

Pl 4- P )■ where the motion of the spool and the cylinder decouples, so that the equality 

Ps +  P r  =  P i +  P> van no longer be maintained. Outside the deadzone. the motion of the 

piston is governed by (2 . 1 2 ). which provides the flow rate input to the cylinder.

For an underlapped valve, the analysis is slightly more complex. Outside the underlap 

region. x v £  ( —f i .  £■•_>)• the sloped regions of Figure 2.8. m i and m-j. as well as the saturations 

are all present as shown in Figure 2.9. However, w ithin the underlap region, we have
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Q

- - i

Figure* 2 .8 : Plot of Eq. (2.12) for an overlapped valve.

I l ( r v. ; I . L ) =  T v +

L)  =  — ,rv -r-

so that

Ql  = Ql  -  m il A- + = i ) -

=  ( m i -f ni2).rv +  (m p i  -  m j f j ) .

where the term ( r/ii = i -  m >z >) is the null How rate due to the load pressure. Pi.. This means 

that even for a centered spool. ,rv =  0. we may have piston motion due to the null How if 

-T =2 and P i  == 0.

O n the other hand, the term  ( nii +  m->).rv represents the flow gain relation between 

spool position and How rate. The flow gain. A',,, within the underlap region is an important 

number in designing hydraulic control systems, since it determines the open-loop plant gain. 

Large variations in the flow gain could lead to instability. Fortunately, its bounds can easily
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Q

— L -r

Figure 2.9: Plot of Eq. (2.12) for an underlapped valve, 

be characterized a.s a corollary of our analysis. The How main is defined ;is 

, - •A,. = - —  =  U » i ni-j) 
d.rv

=  —= ! v7' Ps -  P r  -  Pi. -r v ' Ps -  P r  -+- P l j • 
v 2  L J

Since | / \ |  <  Ps — P r  by our assumptions, it is easy to show that

n v ' Ps -  P r  <  A',, <  \Z2rt \ /  Ps -  P r -

2.5 Conclusions

We have developed a unified model for proportional control valves and analyzed the effect 

of spool lapping on open-loop hydraulic system properties. The  nonlinear mathematical 

equations relate the How rates through the valve ports to the valve parameters. The How 

rates are expressed as a continuous but nonlinear function of lapping parameters,  as well its 

other conventional parameters. These equations are readily applicable to various types of 

proportional valves, and they unify the cases of critical center, overlapped, and underlapped
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valves.

The  spool lands' geometry are individually controlled via model parameters. An offset 

between the lands, and asymmetric neutral spool position can also be simulated using our 

model. The system model is fully implemented in M at lab's Sim ulink simulation package 

and the hydraulic system component models are combined in a library for easy reuse.

We also derived simplified How rate equations under certain wiclelv-used assumptions 

while keeping nonlinearities due to spool geometry. The variation of the How gain and 

uncertainty bounds of the How rates of an underlapped valve are also analyzed.

Although we assumed a constant bulk modulus, changes in temperature, pressure, and 

percent air in the Huid will alter this parameter. The  ;ussumption facilitated the analy­

sis. in particular the piecewise-linear characterization of How versus spool displacement in 

Figures 2.8 and 2.9. I f  operating conditions are such that this iissumption is invalid, adap­

tive [40] and singular perturbation [2 2 ] control approaches are available to accommodate 

the variation in bulk modulus.

O ur future work includes developing internal leakage How models for proportional valves 

to provide improved servo performance. The design of nonlinear controllers for overlapped 

and underlapped valve spool is also a promising research area. Simple nonlinear compen­

sators together with less expensive proportional valves offers substantial cost savings in 

hydraulic control systems design.
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Chapter 3

A Unified M odel of a Proportional 

Valve: Analysis of Accuracy

3.1 In trodu ction

Although the dynamics of proportional valves are highly nonlinear, simplified expressions 

are employed in practice to express the How rates through the valve ports. For a critical 

center valve connected to a double-acting cylinder, the often used load How equation [38]

Q l =  A',,.rv -  K CP\, (3.1)

provides a linearized approximation of the valve dynamics as a function of spool opening and 

load pressure. In this expression, the load flow and load pressure are defined respectively

ilS

Q l =  (Q i + Q - ) / 2 . P L =  P x - P i .

where the subscripts refer to the valve output ports. However, the load flow in Eq. (3.1) 

represents the average of the flows in the lines and does not equal to the instantaneous flow 

rate at each valve ports. Furthermore, this flow equation is only valid for a critical center
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valve.

An improved How model is developed in [23]. where the effect of valve lapping on the 

flow rates is incorporated into the model. This model provides a single set of flow rate e- 

quations for a generic proportional valve, combining the cases of critical center, overlapped, 

and underlapped proportional valves. Under generally accepted assumptions such as in­

compressible fluid, the model simplifies considerably, which results in a piecewise-linear 

approxim ation of the flow rates at the valve ports.

In applications, one of the m ajor concerns for the engineer is the difficulty of determ ining  

the accuracy of these simplified How models. W henever cost and packing size constraints 

are stringent, the tendency is to use cheaper proportional valves and smaller actuators. 

Less expensive valves introduce a higher degree of uncertainty regarding the valve lapping, 

and smaller actuators lim it the bandwidth of the hydraulic system. Both of these choices 

may result in a system where the simplified How relations no longer provide an accurate 

representation of the valve dynamics. Therefore, given a set of desired system parameters, 

it is im portant for the engineer to be able to determ ine, a priori, the accuracy of the flow 

model that will be used subsequently for analysis and control design.

In this chapter, we analyze the accuracy of the piecewise-linear How model developed 

in [23]. The accuracy of the model is determined through a non-dimensional analysis, and 

thus the results hold for any sim ilar system. Given a set of hydraulic system parameters, 

the analysis allows a designer to determine if this How model will provide an accurate 

representation of the valve dynamics for subsequent analysis and control design.

3.2 U nified  P rop ortion al Valve M od el

The proportional valve model developed in [23] provides a single set of flow relations for a 

generic proportional valve shown in Figure 3.1. In terms of the model parameters, the flow
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Figure 3.1: Hydraulic proportional valve.

rates at the valve output ports are expressed its

Q \  =  (A t -  P i ) I As -  Pi  j ‘ J i/(.rv. f  ls . L)

-  sgn (A! -  PR) S P { -  A i l '  J " ( - A - .  - 1R • L
(3.2a)

Q i  =  o I sgn ( P i  -  P r  ) |P , -  P r | ! '  u ( x v. - - j r .  L )

-  sgn (Ps -  P>)|Ps -  A>|‘ '  i / ( - . r v. fj.s. L
(3.2b)

where r» =  C \ \ W \ J ' l / p  and C,i is the discharge coefficient, w is the valve area gradient, and 

p  is the Huid density. The saturation function tt(.r. f . L )  is defined ;is follows

u(.r. L )  — <

0  for r  <  —z. 

x  +  f  for — £ <  x  <  L — z. 

L  for L — z <  x.

In  this model, the £-parameters represent the spool underlap or overlap (at neutral spool 

position) on the supply and return sides of the valve ports. W ith  respect to the neutral 

spool position, positive values of these parameters correspond to spool underlap (shown

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

in Figure 3.1). Similarly, negative param eter values define an overlapped spool.

T h e  model (3.2) unifies the cases o f critical center, overlapped, and underlapped valves. 

The resulting nonlinear equations relate the flow rates through the valve ports to the valve 

parameters. These flow rates are expressed as a continuous but nonlinear function of lapping 

parameters,  as well as other conventional parameters.

In  [23], the flow relations (3.2) are also further simplified under certain widely-used 

assumptions while keeping nonlinearities due to spool geometry. The assumption of in­

compressible fluid, among others, results in simplified flow rate equations, where the flow 

rates are piecewise-linear functions o f spool position. The resulting How rate equations are 

expressed as

Qi  =  Q-2 =  r»ii i(.rv. L)  -  m £. L ) .  (3.3)

where

IP s  - P r - P i. I P s ~ P r  +  P l

' " l ~    =  ' * V  2----------

are the flow gains.

The  accuracy of the How model (3.3) depends on its ability  to estimate the How rates 

observed in a fully nonlinear model o f a given hydraulic system. Hence a comparison of 

flow rates obtained from a detailed nonlinear model of a generic hydraulic system with the 

How rates predicted by the piecewise-linear How model (3.3) is necessary.

As a representative application, we select the system configuration shown in Figure 3.2. 

where a large load is driven by the hydraulic actuator. However, to be useful in practice, 

an accuracy analysis of the model in Eq. (3.3) should not depend on the properties of a 

given system. T h at is. the comparison o f the dynamics of a detailed nonlinear model of the 

system in Figure 3.2 and the unified proportional valve model should give universal results 

in terms of predicting the accuracy o f the latter model. This requires a non-dimensional 

type of analysis, which does not depend on the system parameters.
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Figure .'{.2: A representative* hydraulic system

In order to clarity what is meant by a non-dimensional analysis, we first turn to a linear 

model of the hydraulic system in Figure 3.2 and analyze its invariance properties w ith  

respect to model parameters.

3.3 N on -D im en sion a l A nalysis: Insights from a Linear M od­

el

Considering the hydraulic system of Figure 3.2. an application of the continuity equation 

to the two sides of the cylinder vields

- 11 -  Pip (Pi -  P_>) + Q i

p j = TV [-V-J + Pip(Pl -  p j) -
V  •> L  i

(3.4a)

(3.4b)

where P ip is the internal leakage coefficient between the cylinder chambers [23]. O ther 

parameters are defined in the nomenclature.

We assume that the piston is in itia lly  centered so that the chamber volumes can be
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modeled as

W — ^ 1 0  +  --il-Tp- 

Vj =  1 jo  — -4_>.rp.

where the m iriai chamber volumes are I m — I jo =  Vt /2 .  and Vt is the total cylinder volume 

including the connections, fittings, etc. For a double-acting cylinder w ith equal piston areas, 

we have ,4p =  .4[ =  ,4_>. so that l'i =  .4p.rp and Uj -- — .4p.rp.

Assuming that the motion of the piston is lim ited to the region around the center of the 

cylinder, we may write

l'i 5= (4.4)

Hence the pressure relations (.4.4) can be rewritten as

Pi -  t t -  [-•-IpJ'p -  R ip(Pi  -  P i )  +  Q l] • (4.6a)
 ̂ t

Pi  =  t t  [+ .4 p.rp +  P,p(P i — P i )  — Q j ] . (4.6b)
11

The equation of motion of the load mass is m . ip =  Fhyd- where ni is the total mass of 

the piston and the load, and Fi,V(1 =  -4pP l  is the hydraulic force due to pressure differential

across the piston. Differentiating this and using Eq. (4.6). we obtain

n i  .i p =  P|,yti =  -4pP l
0 ^ 4  (3-<)

=  =7 ^  [-2 .4 p x p -  2P ,pP L +  2Q l ] .
1 1

Using the relation Pl =  m jp/.4 p. we can simplify Eq. (4.7) as

43R-Wni . 4J.4* 4J.4D ,
m x P +  — p 2 — j p  =  — ( 3 .8 )

V t V't V't

Considering the above equation, we see that the dynamics of the hydraulic system is similar
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to that of a second order linear system in the variable .rp =  cp. the piston velocity. However, 

it should be noted that the load flow. Q l .  is in general a nonlinear function of spool position 

and chamber pressures, and therefore the above differential equation is in fact nonlinear.

It is possible to treat a simpler case. where the load flow is given by Eq. (3 .1 ). In  this 

case, the response of the system is linear and can be expressed in terms of the piston velocity 

as

i'p +  2(,"ho-'h l'p +  1 'p =  a- i i _7 Cv • ( 3 . 9 )
•Hp

where the hydraulic natural frequency and the hydraulic dam ping coefficient are defined 

respectively as

, / -1 . (/?,p - / v )  1.1m
- - A' i ~ ^ v t - .4,, v t r

The terms on the right hand side of Eq. (3.9) can be combined as r p =  ( A’(|/ .4 p ).rv. si 

that we obtain

 ̂ p(-sl _  _______jT _______
~  j .  j.

(3.10)I p(.s) .s- -f 2c,‘h-*>'h-s •+■ ■‘■'j;
1

(.s/T’h)-1 +  2Ch(>7«*>'ii) +  I

in terms of the Laplace variable, s. Note that the variable r p is equivalent to the velocity 

of the piston as a function of spool opening if the hydraulic fluid is incompressible. It also 

represent the average behavior of the piston velocity.

To obtain a non-dimensional representation of hydraulic system behavior, we define a 

new complex variable p =  s/uq, so that Eq. (3.10) becomes

I > ) = ______ I____________________  (3 11)
Vp (p)  p  ̂ +  2 C h P + I' '

This transfer function suggests that for ail systems with a given hydraulic dam ping coef­

ficient. Ch- the relation between the actual and approximate piston velocities is invariant
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w ith system properties. T h at is. for a given dam ping coefficient, the frequency response 

of Eq. (3.11) for s =  jui  (i.e.. sine input) is fixed, independent of the value of individual pa­

rameters making up the damping coefficient. Hence. Eq. (3.11) provides a non-dimensiomil 

linear model of the hydraulic system in Figure 3.2.

I f  the unified valve model Eq. (3.3) exhibits similar invariance properties for a given 

value of the damping coefficient, the accuracy o f the model will be independent of how the 

system parameters are selected to give that dam ping coefficient. These invariance properties 

are investigated in the next section.

3.4 Analysis of Unified M odel Accuracy

To show that the accuracy of the unified model Eq. (3.3) can be analyzed universally, 

independent of the value of hydraulic system parameters, we have performed various simu­

lations. In  these simulations, the response of the hydraulic system in Figure 3.2 has been 

evaluated using ( I )  a fully nonlinear, detailed model of the proportional valve, and (2 j  the 

simplified model of Eq. (3.3).

The input was a sinusoidal spool position command of the form

■A- =  .4v s in (2 - / t ) .

where we selected .4V >  L  to cover the whole range of spool travel, and a number of input 

frequencies w ith in  the range j j  =  2 ~ f  €  (0 . tc'h]-

The  nominal model parameters used in simulations are

£ =  1 0  x 1 0 “ 5 m =- =  ± 0 .1  x L  a  =  10  x m',' - /k g 1 -

Ps =  1 .6  x 107 N ./n r  PR =  3.7 x 10s N / n r  3  =  6.1 x 10's N /n r

•4p =  5.8 x 10" 1 m 2 Vt =  40 x 10“ 6 m ;i P ip =  1.8 x 1 0 “ 11 m:i/sP a

m  =  20 kg 5  =  50 x  10“ 3 m A'c =  1.9 x 10“ 12 m3 /'sPa.
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However, in parallel w ith  the discussion regarding the linear non-dimensional model (3.11). 

the system parameters were varied so its to keep the damping coefficient. C(i- constant.

The parameter variations used in simulations for both underlapped and overlapped 

valves are shown in Table 3.1. Note that, whereas the damping coefficient is constant.

Set Parameter L tianges <,h Hz
1 nominal values 0 .6 160
2 m — m / 1 0  and J  — 1 0 J 0 .6 1600
3 m — m /1 0  and .4 — . 4 / \ / l 0 0 .6 160
4 m — 1 0 m and J  — d / 1 0 0 .6 16

5 m — 1 0 m and l ’r — I 0 l ’t 0 .6 16

Table 3.1: Simulation parameter sets

the natural frequency of the hydraulic system varies by a factor of 100. Nevertheless. ;us 

indicated by the non-dimensional linear model of the system, we expect that simulations 

using the simplified model would result in a fixed response, regardless of model parameters.

In addition, we have determined the accuracy of the simplified model (3.3) by comparing 

the simulation results w ith that of a fully non-linear model of the same proportional valve. 

We define the errors in the simplified model as

, =  [ J  IQLn.,n -  Q u ,m|p d f] l,p

P I  J 'W u J p rf* . '

where p =  2 for rms errors and p — c for m axim um  errors. The variable Q Lmm denotes the 

load flow rate obtained using the detailed nonlinear model of the valve, and QL„m denotes 

the load How obtained using the unified proportional valve model (3 .3 ).

A typical response of an underlapped valve for nominal system parameters is shown 

in Figure 3.3. Note that for a full cycle of spool travel, the errors are larger for an accelerating 

load.

The maxim um and rms errors for an underlapped valve for the set of all parameter 

variations described in Table 3.L are shown in Figure 3.4. Note th a t regardless of system
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Figure 3.3: Typical response tor an underlapped valve at /  =  75 Hz (nominal system).

parameters, the errors consistently follow an identical path. This indicates that the simpli­

fied valve model, indeed, confirms the non-dimensional analysis argument developed using 

a second order linear model of the same hydraulic system.

Similarly, a typical response of an underlapped valve for nominal system parameters 

is shown in Figure 3.5. The maximum and rms errors for an overlapped valve for the set 

of all parameter variations described in Table 3.1 are shown in Figure 3.6. As in the case 

of an underlapped valve, the errors follow an identical path regardless of model parameter 

variations.

Note that in Figures 3.4 and 3.6. the maximum errors when using the unified valve 

model are less than 10  percent for frequencies up to one th ird  of the natural frequency 

of the hydraulic system. Since most hydraulic systems are rarely driven w ith input signal 

frequencies more than half of the natural frequency of the system, the unified valve model 

provides an accurate representation of the valve dynamics for most applications.
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Figure 3.4: M axim um  and rms errors tor an underlapped valve.

3.5 Conclusions

In this chapter, we have analyzed the accuracy of the unified proportional valve model 

developed in [23]. As suggested by a second-order linear mot lei of a generic hydraulic 

system configuration, a non-dimensional analysis of the unified model confirms that the 

accuracy of the model is independent of the choice of a particular set of model parameters. 

In fact, for a given value of the hydraulic damping coefficient, the simulations of the model 

error do not depend on the model param eter values, as long as their combination results in a 

fixed dam ping coefficient. Therefore, the accuracy of the model can be determined a priori 

using similar simulations as described in the chapter. This would provide great flexibility to 

an engineer in deciding whether the unified model can be used for subsequent analysis and 

control design without introducing modeling errors due to the presence of valve dynamics.

It  is also shown that the errors in using the unified valve model are less them 10 percent 

for frequencies up to one th ird  of the natural frequency of the system. Since most hydraulic  

systems are rarely driven above this frequency range, it can be concluded that the unified 

valve model provides an accurate representation of the valve dynamics for most applications.
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Chapter 4

Combining Leakage and Orifice 

Flows in a Hydraulic Servovalve 

M odel

4.1 In troduction

In this chapter, we consider flow, in particular, leakage flow, between a servovalve spool and 

valve body. Such flow is a key consideration in precision positioning applications. An ideal  

servovalve has perfect geometry, so that leakage flows are zero. In this case the theoretical 

orifice equation

Q  =  A 'v 'A P r .  (4.1)

where A P  is the pressure drop across the orifice, .r is the orifice opening, and A" is the 

servovalve gain, holds over the whole range of spool travel. Note that subsequent symbols are 

defined in nomenclature. However, for actual  servovalves. this relation only holds outside the 

null region. In  practice, servovalves have considerable leakage flow at small valve openings. 

Indeed, experim entation and analysis indicate that at small spool displacements this flow
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is much larger than orifice flow. Precision positioning applications involve extremely small 

actuator displacement commands that result in very small valve openings, where leakage 

dominates. Most servohydraulic designs are based on the ideal orifice relation (e.g. [6 . 39. 

45]). applied through the entire range of spool motion. The use of such models for design 

appears somewhat questionable, given the applicability o f ideal relations only outside of the 

null region and the dominance of leakage flow w ith in  the null region. A n  accurate model that 

( I )  includes both leakage How and orifice How and (J )  makes a smooth transition between 

them would likely improve precision servohydraulic system design and performance.

An accurate yet simple model of the leakage How in a servovalve facilitates both anal­

ysis and design of hydraulic control systems. Hydraulic system performance can be more 

realistically assessed using such a model for simulations and analyses. Furthermore, a 

nonlinear controller b;used on the servovalve internal leakage model may greatly improve 

the hydraulic system performance, especially in applications that require precise actuator 

positioning. Various nonlinear controllers are available based on the ideal orifice How mod­

el [ti. 45. 5G. 57]. which provide higher performance than conventional P ID  compensators. 

W ith  the availability of an internal leakage model, these controllers may be redesigned to 

accommodate additional nonlinearities due to servovalve leakage.

Although models of leakage flow in servovalves are available in the literature, these 

models impose lim itations on the spool geometry and valve properties. The leakage How 

model developed in [2 0 ] assumes a small and sym m etric overlap between the spool lands 

and the valve control ports. However, this model is only valid for a small positive spool 

displacement lim ited to approxim ately 2 percent of maxim um spool travel. Furthermore, 

the model predicts non-smooth How rate curves for small orifice openings, due to the non­

smooth transition from the assumed laminar leakage to turbulent orifice flow.

The model developed in [18] circumvents this problem and provides smooth transition 

from leakage to orifice flow. But the resulting model is too complex to be used for prac­

tical design of nonlinear controllers to improve hydraulic system performance. This model 

approximates the leakage flow path in a servovalve its a short annuius of fine clearance and
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employs the lam inar How model

where the parameters Aq and A-j are functions of various geometric and fluid properties [19]. 

Since these parameters appear nonlinearly in the How relation, their identification is very 

difficult and will likely require data that is not readily available from the manufacturers.

In  this chapter, we develop a simple nonlinear servovalve model that accurately captures 

the servovalve leakage behavior. The leakage behavior is modeled as turbulent How w ith  a 

How area inversely proportional to the overlap between the spool land and the servovalve 

orifices. The model only assumes a critical center spool, and is valid over the entire range of 

spool travel. In particular, at zero spool displacement, the expressions for turbulent orifice 

How for positive openings and leakage How due to spool-valve overlap predict identical Hows, 

producing a continuous How relation. Moreover, the model parameters can be calculated 

from the manufacturer's data for servovalves w ith  symmetrical and matched construction.

The  remainder of the chapter is organized as follows. In Section 4.2 we develop a non­

linear model of a hydraulic servovalve w ith  internal leakage. In Section 4..'5 we derive the 

internal leakage and pressure sensitivity relations using the model developed. A method  

to calculate the servovalve model parameters from manufacturer data is presented in Sec­

tion 4.4. We compare the response of the model with experimental data in Section 4.5. 

Conclusions and directions for future research are discussed in Section 4.6.

4.2 Servovalve M odel w ith  Internal Leakage

A servovalve spool and a hydraulic actuator, shown in Figure 4.1. are key components of a 

typical hydraulic control system. The servovalve acts as a power am plifier that converts a 

low-power electrical signal to spool displacement, which results in How through the servo­

valve control ports. The flow into the actuator chambers controls the motion of a hydraulic  

piston. The  control flow rates are nonlinear functions of spool displacement and control
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Figure 4.1: Hydraulic- system configuration of a m aterial testing machine.

port pressures. The derivation of the governing equations for a servovalve w ithout internal 

leakage is described in standard texts such as [.'18]. T h e  derivation residts in the1 square- 

root type* of pressure-How relation shown in Eq. (4 .1 ). However, w ith in  the null region, 

the leakage How between the* spool and the valve body dominates the servovalve behavior. 

That is. in this region, the standard squart-root lair (4.1) used to express orifice How dot's 

not provide a valid representation of the How rates. An improved m athem atical model that 

accurately characterizes the servovalve behavior over the whole range of spool motion (e- 

specially around null) would improve hydraulic system analyses and facilitate subsequent 

control design. Such a model is developed in this section.

A common servovalve spool configuration, shown in Figure 4.2. consists of two control 

ports w ith  variable orifices that regulate the How rates. T h e  How rates through the control 

ports of the servovalve are expressed in terms of the supply-side and return-side How rates 

as

Q i =  Q is -  Q ir -  (4.2a)

Q i  =  Q i r  ~  Qis -  (4.2b)

where the flow components are shown in Figure 4.2. T h e  total flow rates through the supply
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control port 1 P \^ Q \  P '  ’Q  > control port 2

F ig u r e  4.2: Hydraulic servovalve configuration.

ami return ports are expressed as

Qs =  Q is  - i -  Q.-s. f4.3a)

Q r — Q i r  ~  Q-i r - (4.3b)

Combining the How relations (4.2) and (4.3). we obtain the supply port flow rate in terms 

of the flows at the control and return ports:

Qs =  Q r +  ( Q i -  Q - ) .

The net How rate at each control port involves two distinct How regimes: orifice and 

leakage flows. Consider, for example, the Hows associated w ith the control port 1 of a 

servovalve for a positive spool displacement, as shown in Figure 4.2. The How rate at the 

supply orifice of this port is given by the orifice equation

Q is  =  A 'is (^ s  -  P i ) 1 '(co  -b.r) ( r  >  0 ).

where the param eter .r() accounts for the leakage flow rate at null (.r =  0). Note that .r(j is 

equivalent to a spool displacement that would result in the same amount of flow in a non­

leaking servovalve as the leakage flow rate in a leaking servovalve w ith  a centered spool.

The flow rate at the return orifice of the control port 1 cannot  be expressed using a simple
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orifice flow equation. Larger positive spool displacements increase the length of the leakage 

flow path to the left of the control port 1 . hence increasing the resistance to flow. T h e  

leakage path is the result of the overlap between the valve body and the spool land, which 

forms a short annulus of fine clearance [19],

As M erritt indicates [38]. the flow through the annulus is only lam inar for a new valve 

and quickly becomes turbulent during service because abrasive materials in the fluid erode 

the orifice edges, increasing their areas. In addition, since the length of the overlap is. in 

general, very short under most operating conditions, the turbulent leakage How assumption 

appears valid.

Since leakage resistance inrresises at larger valve openings, the leakage How rate is in­

versely proportional to spool displacement. The  flow rate at the return side of the control 

port I can thus be expressed as

The term x() is again added to account for the presence of turbulent leakage How at zero 

spool displacement. The  value of the parameter A'[R determines the flow resistance of the 

leakage path in the overlap region as a function of spool displacement.

The' above relations for orifice and leakage How at the servovalve ports form the basis 

of the servovalve How model. For negative spool displacements, the How relations are 

interchanged since now the supply side forms the leakage path and the return side flow is 

a turbulent orifice flow. Applying similar reasoning to each orifice, we obtain the following 

How relations for control port 1:

Q IK =  / M R ( P t  “  P \ i ) 1 2 ' i (.r„ +- A-lR .r) 1 (,r >  ()).

(4.4a)

Q ir  =  A ' i r (P , - P R) l/2
x ^ Z o  +  A ^ x j ' 1. (x  >  0). 

(x 0 - x ) .  (x  <  0).
(4.4b)
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For control port 2. we have

Qis =  A js (P s -  P . ) 1/2
X5(.r0 +  k.2Sx)  l . (x  >  0). 

(.r0 -  .r). ( r  <  0 ).
(4.5a)

f  f.rn 4- ,r ). i r  >  01.
Q i r  =  /v > r(P .2 -  P r ) 1 '   ̂ (4.5b)

[ /o ( - ro -  A-.JR. r ) - ‘ . (,r <  0 ).

Note that these How equations are continuous at the neutral spool position. For example, 

we have

lim Q is l-r) =  lim Q m (x  ) =  I \  IS( Ps -  P i ) 1 '-To-
r —0 “ r —()

4.3  Internal Leakage and P ressu re S en sitiv ity  M odels

T he validity of the servovalve model developed in Section 4.2 can be determined by com­

paring; measured and predicted How characteristics of a servovalve. Among various charac­

terizations. the pressure sensit i r i ty and the interna l  leakage tests provide the most relevant 

data to evaluate the servovalve model validity. These tests are among the standard tests 

performed on servovalves by the manufacturers and their data is available with the servo 

valves.

The pressure sensitivity test measures the variation of load pressure ( / \  =  P\  -  P>). 

w ith the control ports blocked (Q i =  Q_> =  0 ). as the spool travels a complete cycle around 

null [50]. Due to internal leakage, a typical pressure sensitivity curve shown in Figure 4.3 

has a steep but smooth transition between saturations.

The internal leakage test measures the total internal valve How (Qs) from supply to 

return port with the control ports blocked and spool position cycled over its full range [50]. 

A typical leakage flow curve shown in Figure 4.4 hits a m axim um  at neutral spool position 

and decreases rapidly w ith valve stroke.

We now develop mathematical expressions that provide pressure sensitivity and internal
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Pl

i

Figure 4.4: Typical pressure sensitivity curve.

Qs
i

Q s ( r  =  0)

I

Figure 4.4: Typical leakage How curve.

leakage relations for a practical servovalve. Since both tests are performed with tin* control 

ports blocked (i.e. Q \  =  Q< =  0 ). Eq. (4.2a) yields Q is =  Q i r  for the control port I. 

Substituting this into How equations in (4.4) and solving for P[ we obtain

Pi =

f /ip P s  +  PR 

1 +  f i p  

Ps +  / i  ii P r
1 +  f in

{ x  >  0 ). 

(.r <  0 ).
(4.6)
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Here the subscripts p anil n denote positive and negative values of spool position, x. re­

spectively.

Similarly. Eq. (4.2b) yields =  QjR for the control port 2. Substituting this into How 

equations in (4.5) and solving for P> we obtain

P> =

{ Ps +  / j pP r

I  +  A ’p
f  in Ps -1- P[j 

I +  h  n

(x > 0).

. (x <  0 ).

where

/ j p ( x )  =
JR

l< 2  S

/v-s
A-JR

1 +  —
x (|

1 -  —  
Xo

1 A- ,s —
■TO

I  - A - , R -

(4.8)

(4.9a)

(4.9b)

Substituting the pressure expressions (4.6) and (4.8) into the How rate relations (4 .4 ) 

and (4.5). we obtain the orifice flow relations

Q i s  =  Q i r

A is (P s — P r ) I ; - ( x <) +■ x ) ( l  +  / ip ) -1  

A ‘ i r (P s -  P r ) 1 - ( . r 0 -  x ) ( l  -+- / i „ ) “ l -.

(x  >  0 ). 

(x  <  (1).

(4.10a)
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and

Q i s  =  Q i  R

A-2R(Ps -  Pr )1/- U q +  X ) ( l  +  h pr U2. (X >  0). (4.10b)

A'-s(Ps -  P r ) 1' 2( x 0 -  x ) ( l  +  f  >n) _ 1 ” • (x  <  0 ) .

for a servovalve w ith  blocked control ports.

For a symmetric servovalve w ith matched control ports, we may w rite

l \  =  I \  is =  A i r  - /\_>s =  A j r .  

k  — ^'is =  ^ i r  =  k>s — P jr  •

so that we obtain

/ i p  — f i  p- 

/ i n  =  f i n -

Since these relations associate the term + .r w ith positive spool displacements and — / with

negative spool displacements in Eqs. (4.7) and (4.9). they may be combined in a single

expression / ( . r )  of the form

/U)_ ( 1 + !£ !V ( 1 + *!£l
\  x {) /  V x <>

which is valid for both (x  >  0 ) and (.r <  0 ).

Since the control ports are blocked for an internal leakage test, the total supply How 

actually represents the internal leakage flow. Therefore, substituting (4.10) into (4.4). the 

internal leakage flow can be expressed as

Q s ( x )  =  2 K  ( P s  -  P r ) 1-  (x 0 +  |x|) ( 1  +  / ( x ) ) - l / ‘ . (4.11)
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Hence we obtain tin analytical expression of the total internal leakage flow in a servovalve 

as a function of spool position during an internal leakage test. Similarly, using pressure 

relations (4.6) and (4.S). an analytical relation for the load pressure ( P i  =  P i ~  P>) can be 

expressed as

Pl(-i-) =  \  ~ j (Ps ~  P r )  *gn(.r). (4.12)
/ ( .  r) +  1

which is valid during a pressure sensitivity test. Here sgn(-) denotes the signum function. 

By comparing Eqs. (4.11) and (4.12) w ith  the manufacturer's data, we may determine the 

unknown model parameters ( K . x ^ . k ) .  In  practice, we will substitute these parameters in 

servovalve model equations (4.4) and (4..3). which are valid regardless of the ports being 

blocked or unblocked.

4.4 Determination of M odel Parameters

In this section we present a convenient method of determining the servovalve leakage pa­

rameters ( K . x ^ . k )  from readily available manufacturer data for a symmetric servovalve 

w ith matched ports. The required data consists of the rated How values, null leakage How 

rate, and the pressure sensitivity curve at a given supply pressure. Later the estimated 

parameters are used to compare the model against experim ental data at various supply 

pressures.

The rated (m axim um ) flow Q max is the How rate obtainable when the rated input current 

/ max is applied to the valve at a given valve pressure drop

P\- =  Ps -  P r  -  PL-

Rated flow is usually specified for no-load condition ( P i  = 0 ).

The maximum leakage flow, which occurs at neutral spool position, is only a few percent 

of the rated flow rate. In  addition, the leakage flow rate decreases rapidly w ith valve stroke.
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because spool lands overlap the valve orifices [38]. Hence, under rated flow conditions 

{ Q max-/max) and no-load flow ( P l  =  A) at servovalve ports, leakage flow terms in Eqs. (4.4) 

and (4.5) can be ignored. The result is the classical servovalve flow model at rated flow 

values [38]:

Q m x x .  =  — = ? ( Ps -  Pr ) ‘ '/max- 
V 2

so that the flow gain A' is given by

A '=  „
I P s  -  P r ) 1 "/m ax

The equivalent orifice opening .ro is calculated using the leakage flow expression (4.11). 

The leakage flow rate at null is given by

Q*{ . r  -  0 ) =  v 2 / \ ( P s -  P r ) 1 J rn.

so that we obtain

Qs(-r = 0)
.ro — —— . 4.14

\/2A '(P s  -  P r ) 1 -•

Finally, the leakage coefficient A- can be obtained from the pressure sensitivity expres­

sion (4.12). The value of the pressure curve at t  =  r 0 is given by

Solving Eq. (4.15) for k. we obtain

1 /P s - P R  +  PL(.r„)

V ft  -  a, -  *  L l4' 'bl

Therefore, substituting manufacturer data for rated flow at rated current (Q max. /max)- and
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null leakage flow ( Q s(.r =  0 )) into Eqs. (4.13) and (4.14). and using the pressure sensitivity  

data in Eq. (4.16). we can determine the model parameters ( K . x o . k ) .

I t  is interesting to note that the allowed values of the parameter k  (0 <  k <  d c ) .  when 

substituted into Eq. (4.15). result in 0.6 ( P s - P r ) <  P l {x q ) <  (P$ — P r ). A  typical ordinate  

P l (-Tu) >s shown in Figure 4.3. where / \ . ( r )  approaches rapidly to its upper value Ps — P r -

4.5 M odel Evaluation

The servovalve model w ith leakiige has been validated using a Moog 760-723A servovalve 

with 40 liter per m inute no-load rated How at 70 bar valve pressure drop and 25 m A rated 

current. T h e  experimental servovalve data has been provided by Moog Inc. The details 

of leakage' flow and pressure sensitivity tests are provided in [50]. The model parameters 

are calculated using servovalve data at P * — 137.9 bar together w ith Eqs. (4.13). (4.14). 

and (4.16). T h e  resulting parameters are ;is follows:

I \  =  1.46 X l ( r \  .1*0 =  S.28 X u r \  k =  2.93 < 1 0 ~ l .

Note that the same estimated parameters are used in subsequent simulations at various 

supply pressures. The simulated leakiige flow curves are plotted together w ith the ex­

perimental results in Figure 4.5. where we used the above parameters in Eq. (4.11) for 

simulations. Sim ilarly, the pressure sensitivity curves are generated using Eq. (4.12). These 

curves are plotted together with the experimental results in Figure 4.6.

A comparison of simulated anti experimental results in Figs. 4.5 and 4.6 confirms the 

accuracy of the servovalve model in Eqs. (4.4) and (4.5). However, as seen in Figure 4.5. 

the leakiige flow model in Eq. (4.11) slightly overestimates the leakage flow around the 

neutral spool position. Since we neglected the effect of leakiige How at rated flow conditions 

( Q max•■fmax) for param eter identification. Eq. (4.13) results in a slightly larger value of the 

flow gain K .  As the parameter K  is a m ultip lier in Eq. (4.11). a larger value shifts the 

leakage flow curve upwards, more at larger flow rates around null. However, note that the
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Figure 4.5: Leakiige tiow (Qs)-  experiment and simulation.

parameter I \  does not appear in pressure sensitivity relation (4.12). so tliat the resulting 

curves in Figure 4.G are not affected and remain accurate.

4.6 Conclusions

In this chapter, we present a nonlinear servovalve pressure-How model that accurately cap­

tures servovalve leakiige behavior. The leakiige behavior is modeled as turbulent How w ith  

a flow area inversely proportional to the overlap between the spool land and the servovalve 

orifices. The  model only assumes a critical center spool, and is valid o%-er the entire range 

of spool travel. In  particular, at zero spool displacement, the expressions for (a)  turbulent 

orifice How for positive openings and (b) leakiige How due to spool-valve overlap predict 

identical flows. This produces a continuous How relation.

The validity of the model is demonstrated by comparing experimental and simulated 

behavior of a servovalve. The model parameters are calculated using manufacturer data. It  

is shown that the model can accurately predict the leakage performance of a servovalve for
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Figure 4.0: Load pressure ( P i ) :  experiment and simulation.

different values of operating pressures.

The model developed may form the b;isis for improved control design. By using this 

leakiige model, a designer can take advantage of nonlinear control techniques to achieve 

further improvements in servovalve and hydraulic system performance. Especially in ap­

plications that require precise actuator positioning, existing nonlinear controllers may be 

redesigned to accommodate additional nonlinearities due to servovalve leakage.
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Chapter 5

Improved Control of Hydraulic 

Systems using Singular 

Perturbation Theory

5.1 Introduction

The dynamics of hydraulic .systems involve slow and fast modes. These modes are associated 

with the mechanical components and components involving fluid How. respectively. As such, 

controllers for hydraulic systems can be designed and analyzed using the tools of singular 

perturbation theory. A large body of results on singularly perturbed systems exist in the 

control literature, and these results have been successfully applied to feedback design of 

nonlinear systems [33. 34. 35]. However there exist few applications o f singular perturbation  

methods to hydraulic control systems. K im  [32] uses singular perturbation techniques to 

improve spool positioning of a servovalve in an active car suspension application. The  

resulting feedback system, based on a first order approximation o f the servovalve spool 

dynamics, is equivalent to a high gain control system.

In  this investigation, we consider control o f the hydraulic system in Figure 5.1. The  

spool position. x v. is the input. As internal servovalve dynamics are often sufficiently fast
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so as to be ignored in a model, this is a reasonable choice its the controlled input. T h e  piston 

position. x p. is the output. The system in Figure 5.1 is representative of many manufactur- 

P r  P s P r
supplv
port

return
penreturn

port

rn

loadpiston

Figure 5.1: A  generic hydraulic system configuration.

ing systems where the hydraulic piston drives a load w ith its own dynamics. For example, 

hydraulic m aterial testing machines, machine tool drives, or robotic arms in contact with  

their environment all fit into this structure. Conventional controllers for these systems are 

usually designed using a simplified model in which the fast dynamics of the hydraulic system 

are ignored. However, this ad-hoc approach stems from practical convenience and lacks rig­

orous justification. An analytical study would help develop and evaluate high performance 

controllers for hydraulic systems. By bringing singular perturbation control techniques into 

the realm of hydraulic systems, it is possible to match model complexity w ith  the control 

requirements, thus providing better performance.

Nonlinear control of hydraulic systems hits attracted considerable attention in the past 

decade. Various nonlinear force and position control algorithms for hydraulic systems are 

developed in [6 . 27. 45j: and applications of similar designs can be found in [7. 8 . 40]. A ll 

of these designs include the effective bulk modulus. J. in the controller its a known  and 

f ixed parameter. However, in practice, bulk modulus is difficult to measure. Furthermore, 

due to tem perature variations and air entrapment, the bulk modulus may vary during the 

operation of the hydraulic system.
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Some existing controllers require what may be restrictive assumptions. In Alleyne [6 ]. 

a nonlinear force tracking controller includes the effects of servovalve dynamics into the 

design. However. ( I )  the resulting controls require the derivative of the load pressure. 

P\ — Pi .  which may cause performance degradation due to the noisy nature of pressure 

measurements: anil (J )  the design assumes that cylinder chamber volumes are constant. 

To prevent performance degradation at large piston displacements, this assumption may 

necessitate a conservative design. In Sold and Bobrow [45]. nonlinear force and position 

tracking controllers are designed using Lyapunov-biised analysis. They address the problem  

of variable chamber volumes by explicitly including the volume changes into the design. 

But. the design requires the derivative of the desired force, which in turn involves the 

piston acceleration. .rp. Hence, either differentiation of measured piston velocity, or an 

extra sensor is required. Furthermore, the leakage How is not taken into account during  

the design. In high performance applications where low friction (hydrostatieally balanced) 

cylinders are used, the leakiige How may be large.

In this chapter, we present a controller design method for high performance hydraulic 

control systems. The design is based on singular perturbation theory [31] and a nonlinear 

feedback approach that is sim ilar to Lyapunov techniques. The resulting controller will

•  achieve* trajec tory following w ith small e*rror.

•  be robust to variations in the hydraulic fluid bulk modulus.

•  not require piston acceleration feedback.

•  not require derivatives of cylinder chamber pressures.

The approach we develop w ill keep the position tracking error a rb itrarily  small and have 

the added advantages listed above.

This chapter is organized as follows. In Section 5.2 we develop a nonlinear model of the 

hydraulic system in Figure 5.1. A  brief background on singular perturbation theory and an 

im portant result based on Tikhonov's theorem are presented in Section 5.3. The control 

law based on singular perturbation methods is developed in Section 5.4. In  Section 5.5 we
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simulate the performance of the proposed control algorithm. Conclusions and directions for 

future research are discussed in Section 5.6.

5.2 Hydraulic System  M odel

I i i  c i p p l k a t i u i i . i .  a hydraulic actuator is typically a double-acting hydraulic cylinder, as 

shown in Figure 5.2. The  piston motion is obtained by modulating the oil flow into and out

Pi ,Q  i Pi . Q-2

t 1
^ip

A x .4-»

■rP *1 |
^ i■>----------------------»4

Figure 5.2: Double-acting hydraulic piston.

of the cylinder chambers, which are connected to a servovalve through cylinder ports. The  

servovalve provides this modulation. For a critically centered valve as shown in Figure 5.1. 

the How rate equations can be expressed as

osgn(Ps -  Pj) jPs -  Pi I1'" .rv. (a - >  0)
Q  i  =

a s g n (P i -  P r ) | Pi -  P r | L ’  x v. (x v <  0).

and

osgn (P j -  Pr ) jP> -  Pr )1 J x v. (,rv >  0)
Q , =

a  sgn (Ps -  P j) |Ps -  ,rv. (,rv <  0).

where o  =  p  and C,i is the discharge coefficient, w is the valve area gradient, and

p  is the fluid mass density [23. 45]. The  application of the continuity equation to the two
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sides of the cylinder yields

i p  = 1
J  1 V'!

— P j  =  —  | - V j  +  P i p ( P [  — py) -  Qi

(5.1a)

( 5 .1 b )

where

1 1 — 1 io +  -4 i.rp.

1 -j =  V jo +  -4j (■h' — r p)

are the total Huid volumes in the two sides of the cylinder [38]. Here. S  is the piston stroke.

I ’m and I jo are the Huid volumes in the lines between the cylinder and the servovalve. and

/?,p is the internal leakage coefficient.

The actuator force due to the pressure* differential across tlu* piston is F  =  A \ P \  -  A >P>. 

Differentiating this expression and substituting the pressure equations (5.1) results in

- F  =  j ( i p. .ip. P i. P j)  +  </(.rp. P i. P j)  a -- (5.2)

where

and

’ A? ,4 ’j r . 4 1 . 4 . 1
/  — •j’p

r ,  +  i j
-  p ip( P i  -  p , ) —  -i— -

Vj I j

•J =

.4 1 o
sgn(Ps - P i ) | P s - P i |  

.4) a

l J

+  - f r -  « g n (P j -  P r )  | P j  -  P r ! 1 1 . ( x v >  0)
I _)

*4 ia  S g n (P ! -  P r ) |P t -  P r !i ; -
V

+  4 ^ s g n ( P s -  P j)  IP s -  P j | l / 2 . ( x v <  0).
Vo

(5.5)

■5.4)

An im portant feature of the above model is that the control input x v appears explicitly
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and linearly in the force equation (5.2). Hence the control input can be chosen to sim plify the 

force equation to impose a desired form [45]. W e also place the bulk modulus term  on the left 

hand side of Eq. (5.2). Th is  will help develop a control law based on singular perturbation  

theory, where the term 1 /J  acts as a perturbation parameter. Before developing this in 

Section 5.4. we provide a brief background on singularly perturbed systems.

5.3 S ingularly  P erturbed  S y stem s

We will consider hydraulic systems modeled with the following standard full singular per­

turbation description:

x =  f ( . r .  z . t ) .  r(0 ) =  .r„. (5.5a)

=  g \ x . z . t ) .  :(()) =  c(). (5.5b)

where ,r € 3 "  is the state of the slow subsystem, c 6 R ''1 is the state of the fast subsystem, 

and = >  0 is a small parameter. We use .r ( t . f )  and : { t . ± )  to denote the solution of the full 

singular perturbation problem.

The key idea of singular perturbation control methods is to split the dynamics of the 

system into two separate time-scalcs. so that the resulting design problems are easier to 

solve than the design problem of the full singularly perturbed system. Tw o-tim e scale 

decomposition of Eqs. (5.5) can be done by setting f =  0. In this case the dynamics of 

c become instantaneous and the two equations degenerate into the differential-algebraic 

equations

x =  f ( x . z . t ) .  .r(0) =  -To (5.6a)

0 =  g ( x . z . t )  (5.6b)

of order n. Assuming that it exists, let c =  h (x .  t) be the unique isolated root of Eq. (5.6b) 

such that g {x . h (x . t) . t) =  0 for all x £  R a and t >  0. T h e  reduced.-ord.er system is defined
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as

x =  /( .r .  /i(.r. t ) .  t). x (0 ) =  x (). (5.7)

Let x ( t )  be the solution of the reduced order system Eq. (5.7). The "quasi-steady-state" of

— i  ̂  r U f i T i  f l p f t n p r l  o y  " » / ------- ----  f t  t  r* I  f  \  f  1
„  .... v»t_ » , « ,  —  . -  V .« y .

We define a new fast coordinate y =  :  — h(.r. t)  and a hist time-scale r  =  t/-: so that the

singularly perturbed system (5.5) takes the form

d.r
—  =  - : / { s . y  -i- h ( r . t ) . t ) .  (5.8a) 
< l r

dy i )h i)h
—  =  y ( x .  i) +  h ( x . t ) . t )  -  —  y -f h ( s . t ) . t ) .  (5.8b)
d r  dt d.r

ill the ( .  i/ ) coordinates. Setting £ =  0 in Eqs. (5.8) results in the boundary-layer system

dy
—  =  tj[.r. y -r h{.r. t ) . t ) .  //(()) =  :0 -  h \ r .  t ) . (5.0)
d r

which has an equilibrium point at y =  0. Here the variables (.r. t) are treated as constant 

parameters.

The response properties of the full singularly perturbed system (5.5) can be derived 

from the properties of the reduced-order (5.7) and the boundary-layer systems (5.0). In

particular, under the assumptions of the Tikhonov's theorem (Appendix 5.7). it can be

shown that there exist f[ >  0 and f* >  0 such that

. r | f : - ) - 7 ( f )  =  0 ( : ) .  (5.10a)

: ( t .  -:) -  h ( l ( t ) . t )  =  0 { - : ) .  (5.10b)

for t >  t \ .  whenever £ <  £*. Here O (-)  is the order of magnitude notation [31]. Hence, the 

theorem guarantees that following a boundary-layer transition for t €  [0. <i ) the slow states 

of Eqs. (5.5) w ill remain close to the states of the reduced-order system and the fast states
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w ill approach to their quasi-steady-state.

A  mathematical model o f the hydraulic system in Figure 5.1 can be expressed in the 

form of the singular perturbation description of Eqs. (5.5). Then , provided that a suitable 

control law can be developed, a closed-loop system can be designed such that the tracking 

error of the piston motion is kept small and the pressure transients are attenuated rapidly.

5.4 C ontrol Law D esign

The terms in Eqs. (5.3) and (5.4) consist of measured system states. (,rp. .rp. P[. P>). and 

of simple functions of known model parameters (e.g. l'i =  I'm -f- ,4 [.rp). Therefore, for a 

given set of model parameters, the functions /  and y  can be computed online. Note that 

the variable and difficult-to-quantify fluid bulk modulus. J. is not a parameter in /  or <j. 

whereas the remaining terms are easily measured or computed.

The goal of the design is to modulate the piston force* [ F )  to control the piston position 

(.rp) using the spool position input ( r v ) to achieve this. To sim plify the force equation (5.2). 

we select the spool position command to be of the form

A  =  ^ [ - /  -  K ( F  - / ) ( • )  ) J  . (5.11)

where I \  is a constant: am i the function /?(•) w ill be synthesized in such a manner that the

piston follows a desired position profile. Substituting Eq. (5.11) in Eq. (5.2). we obtain

- : F = - K ( F - h ) .  5 =  1 /J .

Then the equations of motion of the hydraulic system in Figure 5.1 can be expressed as

n ix p 4- bxp +  kxp - F. (5.12a)

-:F  =  - K ( F  -  h). (5.12b)

Given a smooth desired trajectory. x<i(£). of the piston, we define the position tracking
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error. e (t ) .  and the boundary-layer variable. y ( t ) .  as

e =  x p — and y =  F  — h. 

where the function h is chosen such that

h ( e . i ’. t )  =  r ( p . e )  +  F ti( t )  (5.13)

w ith

r ( c . f ' )  =  (fr — mk\.)p 4- (A- — tn Ap)c.  

f i t  =  m x , t +  h.i\\ -i- A\r(1.

Substituting Eq. (5.13) into Eqs. (5.12). the equations of motion of the hydraulic- system 

in the new slow state variable, t .  and the new fast state variable*, y. become

m(p +  k \p  -r A'pc) =  (/. (5.14a)

f t /  =  — Kt/  — zh. (5.14b)

As z — 0. we obtain the reduced-order and boundary-layer systems in the new state vari­

ables expressed as

p +  k\.p +  kpP =  0. (5.15a)

^  =  - K  i). (5.15b)
d r

for m #  0 and r  =  t f

For positive values of the parameters k \ .  A-p. and K .  the equations (5.15) are globally  

exponentially stable with equilibrium  points at e =  e =  y =  0. In  addition, selecting 

h ( e .e . t )  to have bounded first partia l derivatives w ith  respect to its arguments, we can
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apply Theorem 5.7.1. The relations (5.10) vielcl

e { t .z )  — e (t )  =  0 ( f ) .  

e(t . s ) - H t )  =  0 ( - : ) .

F ( t . s )  - h ( e ( t ) . t )  = 0 ( f ) .

for all t >  t \  >  0. Since the exponentially stable slow system has equilibrium at the origin, 

we obtain

lim  f ( t )  = 0  => lint e(f. f )  =  O ( f) .
I  —  x :  f — x :

In particular, the choice of the function h as in Eq. (5.15) results in a dosed-loop hydraulic 

system that will follow a given trajectory w ith  small error. Sim ilar arguments also yield

lim <(t. =  ()(£ ).

lim [F ( t .  --) -  F ,i(/)j =  ( ) ( • ) .
f —x

Since the errors are of the order 0 (  f ) =  0 (  1 /  3 ) .  it is clear that a system with sufficiently 

large bulk modulus will track a reference path w ith very small error. It  should be noted that 

there exists a lower lim it. J *. of the bulk modulus such that if 3  <  3 ' .  the hydraulic system 

tracking performance w ill degrade. However this lower lim it is usually much less than the 

normal range of the bulk moduli encountered in practical applications. The closed-loop 

performance and robustness properties of the hydraulic system in Figure 5.1 are illustrated  

in the next section.

5.5 Controlled Hydraulic System  Simulations

The control design consists of three parts. First, given a smooth trajectory, j j .  the control 

signal. x v. in Eq. (5.11) is computed online using the measured states. The control signal
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transforms the hydraulic system dynamics as expressed by Eqs. (5.14) in terms of the 

variables e and y. Since the perturbation parameter, f . is sufficiently small by assumption, 

the hydraulic system dynamics are approxim ately described by Eq. (5.15). In  particular, 

the tracking error dynamics are described by the differential equation (5.15a). which has a 

stable equilibrium  at the origin for positive values of kp and kv . The  second design step is 

to select the gains kp and A\. to achieve bust error convergence to zero. We express these 

gains as

A'v =  -C-mi and kp : a.ir (5.16)

and select c,’ =  v to obtain a critically damped error dynamics. The variable u.,, provides 

a measure of the bandwidth of the error dynamics. Finally, the gain of the fast system is 

designed to obtain f;ist convergence of the boundary-layer variable y to zero. In general, a 

larger gain. K.  provides faster convergence of the boundary-layer system, but too large a 

value may cause actuator saturation.

We performed various simulations ter determine the c ontroller's performance in providing 

position tracking. Model parameters used in simulations are

m =  12 b =  21) k =  50 x K )1

=  4 0 -  C =  0.71 K =  1.0 x l i r ri

4«m =  6.9 X 10*

in standard SI units.

The response of the hydraulic system to a 10 Hz sinusoidal trajectory input of 0.05 m 

amplitude is shown in Figure 5.3 for 3  =  inom- The  maximum and steady-state errors are 

shown in Figure 5.4 as a function of bulk modulus. The system becomes m arginally stable 

at 0.091 j nom- However, it can be seen that the system is robust to large variations in bulk 

modulus w ith in  the range of [0.1.3.0] J nom- and fhat the errors stay small in the vicinity of 

Jnom- Indeed by Theorem  5.7.1. robustness is guaranteed for J 6  [0.1. d c )  Jn0m-
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Figure o.:5: Tracking of a reference trajectory and tracking error ( ID Hz sine).

The nwiximum and steady-state tracking errors converge to a constant value in Fig­

ure 1.4. As the bulk modulus becomes larger, we have =  1 /3  — 0. so that the system 

dynamics are described by Eqs. (1.11). In  the lim it, the tracking error dynamics become 

independent of the fast transients, anil are described by Eq. (1.11a). Therefore, the tracking  

error is lim ited by the choice* of the- parameters kp and k\.. and in particular, by the* choice 

of the error bandwidth through the relations (1.16).

We have also simulated the* performance o f the hydraulic system tor a trajectory input 

with large displacements. T h e  trajectory consists of steep ramps and large periodic motion 

throughout the range of the cylinder travel. The  path is generated using M atlab ’s Spline 

Toolbox [11] and is smooth in the sense that its generating polynomials are twice contin­

uously differentiable. Note that a smooth path is necessary to satisfy the differentiability  

requirements in the Tikhonov's theorem. T h e  response of the hydraulic system for 3  =  3nom 

is shown in Figure 1.5. T h e  maximum errors as a function of bulk modulus are shown in 

Figure 1.6.

Unlike conventional and various nonlinear control designs, the tracking errors in our
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Figure 3.4: Maxiim un and steady-state errors as a function of bulk modulus (10 Hz sine).

design are small throughout the range of the cylinder stroke since the effects of variable 

cylinder chamber volumes are compensated for in the controller. In addition, it is also 

clear that the system preserves its robustness properties for large displacement inputs as 

well as high frequency small am plitude trajectories. In particular, since the rime-variable 

bulk modulus is not a parameter in the controller, robustness is achieved without any 

com putationally intense adaptive approach. Furthermore, improved tracking performance 

is obtained without the cost of additional sensors.

5.6 Conclusions

We have developed a design procedure for hydraulic control systems such that the resulting 

controller will

•  achieve trajectory following w ith  small error.

•  be robust to variations in the hydraulic fluid bulk modulus.

•  not require piston acceleration feedback.

•  not require derivatives of cylinder chamber pressures.
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The design is based on the method of singular perturbation theory and a nonlinear feedback 

approach that uses Lyapunov techniques. Although our design will not achieve asymptotic  

command following, it w ill keep the position tracking error arb itrarily  small and have the 

added advantages listed above. The authors also plan to validate the performance of this 

control design method on hardware in near future.

The control design approach adopted in this chapter improves on existing designs of 

hydraulic control systems in various aspects. The m ajority  of these designs include the 

effective bulk modulus in the controller ;is a known and fixed parameter [40. 45]. In  practice, 

bulk modulus may vary significantly due to tem perature variations and air entrapment, 

which may result in loss of robustness of the hydraulic control system. In addition, many 

designs in the literature' require the derivative of the load pressure1, or the1 piston accele'ration 

in the* controller formulation [G. 45]. Furthermore. rhe*se de-signs may ;issume that cylinder 

chamber volumes are* constant, which necessitates a conservative design [0. 7. Sj. Finally, 

in high performance i , , ations where* low friction cylinders are used, the* leakage* flow 

may be' large', and it should be compensated in the design. A ll of rhe'se* assumptions and 

re'quirements involve additional computations or additional sensors, and the resulting design 

may not provide robust performance. In contnist. the* design provided in this chapter has 

none of the disadvantages described above.

Tikhonov s theorem guarantees that there’ is a range' of parameters. ; € (0. = “ ). such 

that the full singularly perturbed system will track a given smooth trajectory w ith  small 

error. However, exactly how small the tracking error will be. and the range of singular 

perturbation parameters for which Tikhonov's theorem hold, cannot be determined from 

the statement of the theorem. O ur future work w ill address the problem of determining  

less conservative estimates of this range along the lines of the small-gain formulation, which 

looks promising in our work to date.
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5.7 Appendix: Tikhonov’s Theorem

We present a simplified global version of Tikhonov's theorem adapted from Khalil [31. 

pages 384-385]. In  essence, the theorem states that for singularly perturbed systems with a 

sufficiently small perturbation parameter, if the fast and slow subsystems are exponentially 

stable, then the full system dynamics w ill be clcsc to the dynamics o f the rcduccd-ordcr and 

boundary-layer systems, provided the in itia l conditions are sufficiently close to the origin.

T h e o re m  5 .7 .1 . Consult'r the singular perturbation problem (5.5) and let z =  h ( .r . t )  be

an isolated root o f  Eg. (5 .6 b ). Assume that the following conditions are satisfied fo r  all

( x . z  -  h ( x . t ) . t )  € R" x R m x [(). x ) .

•  The functions f . i j  and  their  first partia l derivatives with respect to . r . z . t  are con­

tinuous and bounded. The function h ( .r . t )  has bounded first partia l deriratices with 

respect to r. t.

•  The Jacobian <)g(x. z . t ) / i ) z  and < ) f (x .  h(.r. t ) . t) /<).r hare bounded firs t partia l deriva­

tives with respect to the ir  nnjuments.

•  The origin o f the reduced-order system (5.7) is exponentialli/  stable.

•  The origin of the boundary-layer system (5.‘J) is exponentially stable, uniformly m  

x. t.

Then, there exist positive constants c j. c> and z ' such that f o r  all

il-roli <  c \.  ||Co -  h(.ro.0)|| <  o> and  0 <  f  <  f ‘ .

the singular perturbation problem  (5.5) has a unique solution x l t . z ) .  : ( t . z )  defined fo r  a ll

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

t >  0. M oreover,  g iven  a n y  t i >  0. we have

f o r  t >

x ( t . £ )  -  x (0  =  0 ( i  

z ( t . z )  -  h ( x ( t ) . t )  =  Q ( z

(5.17)

(5.18)

t [ whenever f  <  f
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Chapter 6

Conclusions and Future Research

6.1 Contributions

U n ifie d  V a lv e  M o d e l. In Chapter 2. we developed a unified model for proportional control 

valves and analyzed the effect of spool lapping on open-loop hydraulic system properties [l23j. 

The nonlinear m athem atical equations relate the How rates through the valve ports to the 

valve parameters. The How rates are expressed as a continuous hut nonlinear function of 

lapping parameters, as well ;is other conventional parameters. These equations are readily 

applicable to various types of proportional valves, and they unify the cases of critical center, 

overlapped, and underlapped valves.

The spool lands' geometry are individually controlled via model parameters. An offset 

between the lands, and asymmetric neutral spool position can also be simulated using our 

model. The system model is fully implemented in Matlab's Sim ulink simulation package 

and the hydraulic system component models are combined in a library for easy reuse.

We also derived simplified How rate equations under certain widely-used assumptions 

while keeping nonlinearities due to spool geometry. The variation of the flow gain and 

uncertainty bounds of the flow rates of an underlapped valve are also analyzed.

Although we assumed a constant bulk modulus, changes in tem perature, pressure, and 

percent air in the fluid w ill alter this param eter. The assumption facilitated the analysis.
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in particular the piecewise-linear characterization of flow versus spool displacement. I f  

operating conditions are such that this assumption is invalid, adaptive [40] and singular 

perturbation [22] control approaches are available to accommodate the variation in bulk  

modulus.

U n if ie d  M o d e l A cc u rac y . In  C hapter 3. we analyzed the accuracy of the unified 

proportional valve model developed in Chapter 2. As suggested by a second-order linear 

model of a generic hydraulic system configuration, a non-dimensional analysis of the unified 

model confirms that the accuracy of the model is independent of the choice of a particular 

set of model parameters. In fact, for a given value of the hydraulic damping coefficient, 

the simulations of the model error do not depend on the model parameter Valin's, as long 

as tht'ir combination results in a fixed dam ping coefficient. Therefore, the accuracy of the 

model can be determined a priori using similar simulations as described in the chapter. This 

would provide great flexibility to an engineer in deciding whether the unified model can be 

used for subsequent analysis and control design without introducing modeling errors due to 

the presence of valve dynamics.

It is also shown that the errors in using the unified valve model are less than 10 percent 

for frequencies up to one third of the natural frequency of the hydraulic system. Since most 

hydraulic systems are rarely driven above this frequency range, it has been concluded that 

the unified valve model provides an accurate representation of the valve dynamics for most 

applications.

L eakag e  F lo w  M o d e l. In Chapter 4. we presented a nonlinear servovalve pressure-How 

model that accurately captures servovalve leakage behavior [24. 25]. The leakage behavior 

is modeled as turbulent How with a flow area inversely proportional to the overlap between 

the spool land and the servovalve orifices. The model only assumes a critical center spool, 

and is valid over the entire range of spool travel. In particular, at zero spool displacement, 

the expressions for (a )  turbulent orifice flow for positive openings and (b) leakage flow due 

to spool-valve overlap predict identical flows. Th is  produces a continuous flow relation.

The validity of the model is demonstrated by comparing experimental and simulated
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behavior of a servovalve. T h e  model parameters are calculated using manufacturer data. We 

have shown that the model can accurately predict the leakage performance of a servovalve 

for different values of operating pressures.

Singular P ertu rb atio n  Control. In Chapter 5. we developed a design procedure for 

hydraulic control systems [22] such that the resulting controller will

•  achieve trajectory following with small error.

•  be robust to variations in the hydraulic Huid bulk modulus.

•  not require piston acceleration feedback.

•  not require derivatives of cylinder chamber pressures.

The design is based on the method of singular perturbation theory and a nonlinear feedback 

approach that uses Lyapunov techniques. Although our design will not achieve asymptotic 

command following, it will keep the position tracking error arb itrarily  small and have the 

added advantages listed above.

T h e  control design approach adopted in this chapter improves on existing designs of 

hydraulic control systems in various aspects. The m ajority  of these designs include the 

effective bulk modulus in the controller as a known and fixed parameter [40. 45]. In practice, 

bulk modulus may vary significantly due to tem perature variations and air entrapm ent, 

which may result in loss of robustness of the hydraulic control system. In addition, many 

designs in the literature require the derivative of the load pressure, or the piston acceleration 

in the controller form ulation [G. 45]. Furthermore, these designs may assume that cylinder 

chamber volumes are constant, which necessitates a conservative design [6. 7. 8]. Finally, 

in high performance applications where low friction cylinders are used, the leakage How 

may be large, and it should be compensated in the design. A ll of these assumptions anil 

requirements involve additional computations or additional sensors, and the resulting design 

may not provide robust performance. In contrast, the design provided in this chapter has 

none of the disadvantages described above.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

S u m m a ry  o f  P u b lic a tio n s . The results reported in this thesis have been published 

or submitted for publication in various journals and conference proceedings:

1. Bora Eryilm az anti Bruce H. W ilson. Improved control of hydraulic systems us­

ing singular perturbation theory. A S M E  J o u rna l o f  D ynam ic  Systems. Measurement, and  

Control. 1999. In review.

2. Bora Eryilm az and Bruce H. W ilson. Combining leakage and orifice Hows in a hy­

draulic servovalve model. Journal of D ynam ic  Systems. Measurement, and Control. Septem­

ber 2000. To be published.

3. Bora Eryilm az and Bruce H. Wilson. Modeling the internal leakage of hydraulic 

servovalves. In Proceedings o f the A S M E  D y n a m ic  Systems and Control D ivision. November 

2000. To be published.

4. Bora Eryilm az and Bruce H. Wilson. A unified model of a proportional valve. In 

Sanjay I. M istry and T im othy McLain, editors. Proceedings o f the A S M E  Flu id  P o in  r  

Systems and Technology Division. FPS T-Vol. 6. pages 9'> 102. Nashville. T N . 1999. A S M E  

International Mechanical Engineering Congress and Exposition.

6.2 Future Research

O ur work to date provides a good foundation for further research in improving the per­

formance of electrohydratilic systems. In particular, our results provide a basis for further 

developments in incorporating our proportional and servo valve models w ith  various non­

linear control techniques and analyzing the robustness of these techniques to parameter 

variations. The design of nonlinear controllers for overlapped and underlapped valves is 

another a promising research area. Simple nonlinear compensators together w ith less ex­

pensive proportional valves may. in fact, offer substantial cost savings in hydraulic control 

systems design.

T h e  leakage model developed may form the basis for improved control design. By  

using this leakage model, a designer can take advantage of nonlinear control techniques to 

achieve further improvements in servovalve and hydraulic system performance. Especially
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in applications that require precise actuator positioning, existing nonlinear controllers may 

be redesigned to accommodate additional nonlinearities due to servovalve leakage.

In  the design of our singular perturbation based controller. Tikhonov's theorem guaran­

tees a range of perturbation parameters such that the full singularly perturbed system will 

track a given smooth trajectory with small error. However, exactly how small the tracking 

error w ill be. and the range of singular perturbation parameters for which T ikhonov’s the­

orem hold, cannot be determined from the statement of the theorem. Future work should 

address the problem of determining less conservative estimates of this range. O u r work to 

date suggests that the small-gain formulation may be a suitable approach.

In  addition, our research provides new tools to analyze and improve the performance 

of electrohydraulic control systems. Possible applications of our results include the use of 

less expensive (and non-smooth nonlinear) proportional valves together with a nonlinear 

controller in active vehicle vibration isolation, where the valve cost is a m ajor deterrent 

for commercial applications. In hydraulic m aterial testing machines, the use of our leakage 

model may be used to improve the precision motion performance in some tests such as creep 

loading, where the valve spool mostly resides w ithin the null region with relatively large 

leakage Hows.
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